IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i3d10.1140_epjb_s10051-023-00503-4.html
   My bibliography  Save this article

Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide

Author

Listed:
  • Qianlong Kang

    (Hefei University of Technology)

  • Fujia Chen

    (Hefei University of Technology)

  • Hongyong Mao

    (Hefei University of Technology)

  • Keya Zhou

    (Harbin Institute of Technology)

  • Kai Guo

    (Hefei University of Technology)

  • Shutian Liu

    (Harbin Institute of Technology)

  • Zhongyi Guo

    (Hefei University of Technology)

Abstract

Since valley was introduced into phononic crystals, it has promoted far-reaching developments in topologically protected acoustic transmission. However, in the novel research field of valley-Hall phononic topological insulators, most researchers only focus on valley-protected edge state with a single working frequency band. Here, we demonstrate dual-band valley-protected topological edge states in a graphene-like two-dimensional phononic crystal, which consists of columnar air cavities and rigid scatters. It is demonstrated that energy band inversion happens and a gap can be opened at the two Dirac cones at the K (K') symmetry points of the Brillouin zone by tuning the radius differences between adjacent columnar air cavities. In addition, we demonstrate the presence of dual-band topologically protected edge states with properties like suppressed back-scattering, one-way transmission, and sharp bend resistance. In these contexts, beam splitting with dual-band is achieved by combining valley vortex states with opposite chirality. Our work may provide a practical method for solving high-efficiency and high-capacity multi-channel acoustic communication in fluid media. Graphical Abstract The dual-band valley-protected topological edge states have been demonstrated in a graphenelike two-dimensional phononic crystal, which consists of columnar air cavities and rigid scatters. The energy band inversion happens and a gap can be opened at the two Dirac cones at the K (K’) symmetry points of the Brillouin zone by tuning the radius differences between adjacent columnar air cavities. Based on these, beam splitting with dual-band can be achieved by combining valley vortex states with opposite chirality

Suggested Citation

  • Qianlong Kang & Fujia Chen & Hongyong Mao & Keya Zhou & Kai Guo & Shutian Liu & Zhongyi Guo, 2023. "Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-7, March.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:3:d:10.1140_epjb_s10051-023-00503-4
    DOI: 10.1140/epjb/s10051-023-00503-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00503-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00503-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander B. Khanikaev & Romain Fleury & S. Hossein Mousavi & Andrea Alù, 2015. "Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. S. Hossein Mousavi & Alexander B. Khanikaev & Zheng Wang, 2015. "Topologically protected elastic waves in phononic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    3. Xin-Tao He & En-Tao Liang & Jia-Jun Yuan & Hao-Yang Qiu & Xiao-Dong Chen & Fu-Li Zhao & Jian-Wen Dong, 2019. "A silicon-on-insulator slab for topological valley transport," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Zhenhua Tian & Chen Shen & Junfei Li & Eric Reit & Hunter Bachman & Joshua E. S. Socolar & Steven A. Cummer & Tony Jun Huang, 2020. "Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yanan Wang & Hai-Xiao Wang & Li Liang & Weiwei Zhu & Longzhen Fan & Zhi-Kang Lin & Feifei Li & Xiao Zhang & Pi-Gang Luan & Yin Poo & Jian-Hua Jiang & Guang-Yu Guo, 2023. "Hybrid topological photonic crystals," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Xiang Xi & Bei Yan & Linyun Yang & Yan Meng & Zhen-Xiao Zhu & Jing-Ming Chen & Ziyao Wang & Peiheng Zhou & Perry Ping Shum & Yihao Yang & Hongsheng Chen & Subhaskar Mandal & Gui-Geng Liu & Baile Zhang, 2023. "Topological antichiral surface states in a magnetic Weyl photonic crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Chunxue Wang & Daming Zhang & Jian Yue & Xucheng Zhang & Hang Lin & Xiangyi Sun & Anqi Cui & Tong Zhang & Changming Chen & Teng Fei, 2023. "Dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation technique," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Xiao-Chen Sun & Hao Chen & Hua-Shan Lai & Chu-Hao Xia & Cheng He & Yan-Feng Chen, 2023. "Ideal acoustic quantum spin Hall phase in a multi-topology platform," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Cuicui Lu & Yi-Zhi Sun & Chenyang Wang & Hongyu Zhang & Wen Zhao & Xiaoyong Hu & Meng Xiao & Wei Ding & Yong-Chun Liu & C. T. Chan, 2022. "On-chip nanophotonic topological rainbow," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Li, Binsheng & Chen, Hui & Xia, Baizhan & Yao, Lingyun, 2023. "Acoustic energy harvesting based on topological states of multi-resonant phononic crystals," Applied Energy, Elsevier, vol. 341(C).
    11. Hengjiang Ren & Tirth Shah & Hannes Pfeifer & Christian Brendel & Vittorio Peano & Florian Marquardt & Oskar Painter, 2022. "Topological phonon transport in an optomechanical system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Jian-Wei Liu & Fu-Long Shi & Ke Shen & Xiao-Dong Chen & Ke Chen & Wen-Jie Chen & Jian-Wen Dong, 2023. "Antichiral surface states in time-reversal-invariant photonic semimetals," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Anton Vakulenko & Svetlana Kiriushechkina & Daria Smirnova & Sriram Guddala & Filipp Komissarenko & Andrea Alù & Monica Allen & Jeffery Allen & Alexander B. Khanikaev, 2023. "Adiabatic topological photonic interfaces," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Qiaolu Chen & Zhe Zhang & Haoye Qin & Aleksi Bossart & Yihao Yang & Hongsheng Chen & Romain Fleury, 2024. "Anomalous and Chern topological waves in hyperbolic networks," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    15. Byoung-Uk Sohn & Yue-Xin Huang & Ju Won Choi & George F. R. Chen & Doris K. T. Ng & Shengyuan A. Yang & Dawn T. H. Tan, 2022. "A topological nonlinear parametric amplifier," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Abhishek Kumar & Manoj Gupta & Prakash Pitchappa & Nan Wang & Pascal Szriftgiser & Guillaume Ducournau & Ranjan Singh, 2022. "Phototunable chip-scale topological photonics: 160 Gbps waveguide and demultiplexer for THz 6G communication," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Lianchao Wang & Julio A. Iglesias Martínez & Gwenn Ulliac & Bing Wang & Vincent Laude & Muamer Kadic, 2023. "Non-reciprocal and non-Newtonian mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:3:d:10.1140_epjb_s10051-023-00503-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.