IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v96y2023i11d10.1140_epjb_s10051-023-00621-z.html
   My bibliography  Save this article

Random walks in correlated diffusivity landscapes

Author

Listed:
  • Adrian Pacheco-Pozo

    (Humboldt-Universität zu Berlin)

  • Igor M. Sokolov

    (Humboldt-Universität zu Berlin
    IRIS Adlershof)

Abstract

In recent years, several experiments have highlighted a new type of diffusion anomaly, which was called Brownian yet non-Gaussian diffusion. In systems displaying this behavior, the mean squared displacement of the diffusing particles grows linearly in time, like in a normal diffusion, but the distribution of displacements is non-Gaussian. In situations when the convergence to Gaussian still takes place at longer times, the probability density of the displacements may show a persisting peak around the distribution’s mode, and the pathway of convergence to the Gaussian is unusual. One of the theoretical models showing such a behavior corresponds to a disordered system with local diffusion coefficients slowly varying in space. While the standard pathway to Gaussian, as proposed by the Central Limit Theorem, would assume that the peak, under the corresponding rescaling, smoothens and lowers in course of the time, in the model discussed, the peak, under rescaling, narrows and stays sharp. In the present work, we discuss the nature of this peak. On a coarse-grained level, the motion of the particles in the diffusivity landscape is described by continuous time random walks with correlations between waiting times and positions. The peak is due to strong spatiotemporal correlations along the trajectories of diffusing particles. Destroying these correlations while keeping the temporal structure of the process intact leads to the decay of the peak. We also note that the correlated CTRW model reproducing serial correlations between the waiting times along the trajectory fails to quantitatively reproduce the shape of the peak even for the decorrelated motion, while being quite accurate in the wings of the PDF. This shows the importance of high-order temporal correlations for the peak’s formation. Graphical abstract

Suggested Citation

  • Adrian Pacheco-Pozo & Igor M. Sokolov, 2023. "Random walks in correlated diffusivity landscapes," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(11), pages 1-13, November.
  • Handle: RePEc:spr:eurphb:v:96:y:2023:i:11:d:10.1140_epjb_s10051-023-00621-z
    DOI: 10.1140/epjb/s10051-023-00621-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-023-00621-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-023-00621-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:96:y:2023:i:11:d:10.1140_epjb_s10051-023-00621-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.