IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i2d10.1007_s10668-020-00639-8.html
   My bibliography  Save this article

Vulnerability assessment of African coasts to sea level rise using GIS and remote sensing

Author

Listed:
  • Sherein El-Shahat

    (Nile Higher Institute for Engineering and Technology)

  • Abbas Mohamed El-Zafarany

    (Cairo University)

  • Tarek Abou El Seoud

    (Cairo University)

  • Safaa A. Ghoniem

    (Cairo University)

Abstract

Climate change and its association with sea level rise ‘SLR’ have become a true fact that increasingly challenge coastal zones all over the world. This study attempts to fill the lack of studies and assessments of the African coasts through developing a SLR vulnerability assessment. The study has customized coastal vulnerability index ‘CVI’ to include seventeen parameters grouping in the vulnerability’s pillars: exposure, sensitivity, and resilience. The selected variables represent the main coastal characteristics physically and socioeconomically. The study applies CVI method for the African coastal zone using GIS and remote sensing. However, the study has followed the case study approach on the continental level of Africa, and the results have classified coastal areas into different degrees of vulnerabilities. Application of CEI equation showed that about 40% of African coast are ranging from moderate to very high exposure, as for the CSI equation showed that 75% of African coast are ranging from moderate to very high sensitivity, as for the CRI equation showed that 55% of African coast are ranging from moderate to very high resilience, and as for the CVI equation showed that 35% of the 26,000 km length of Africa’s coasts are vulnerable to SLR. It has been approved that deltas are the most vulnerable areas along the African coasts. Also, values of CVI pillars for each of these deltas showed great variation, which accordingly could give an indicator for adaptation and mitigation strategies of Africa’s coasts at regional and national levels, which could be one strategy or more: protection, accommodation, and retreat strategies.

Suggested Citation

  • Sherein El-Shahat & Abbas Mohamed El-Zafarany & Tarek Abou El Seoud & Safaa A. Ghoniem, 2021. "Vulnerability assessment of African coasts to sea level rise using GIS and remote sensing," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2827-2845, February.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00639-8
    DOI: 10.1007/s10668-020-00639-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00639-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00639-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Arun Kumar & Pravin Kunte, 2012. "Coastal vulnerability assessment for Chennai, east coast of India using geospatial techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 853-872, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    2. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    3. Aishwarya Narendr & S. Vinay & Bharath Haridas Aithal & Sutapa Das, 2022. "Multi-dimensional parametric coastal flood risk assessment at a regional scale using GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9569-9597, July.
    4. Gianluigi Di Paola & Pietro Aucelli & Guido Benassai & Germán Rodríguez, 2014. "Coastal vulnerability to wave storms of Sele littoral plain (southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1795-1819, April.
    5. Mishra, Swasti Vardhan & Gayen, Amiya & Haque, Sk. Mafizul, 2020. "COVID-19 and urban vulnerability in India," SocArXiv 523r8, Center for Open Science.
    6. Malay Kumar Pramanik, 2017. "Impacts of predicted sea level rise on land use/land cover categories of the adjacent coastal areas of Mumbai megacity, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1343-1366, August.
    7. Rabia Yahia Meddah & Tarik Ghodbani & Rachida Senouci & Walid Rabehi & Lia Duarte & Ana Cláudia Teodoro, 2023. "Estimation of the Coastal Vulnerability Index Using Multi-Criteria Decision Making: The Coastal Social–Ecological System of Rachgoun, Western Algeria," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    8. Malay Kumar Pramanik & Sumantra Sarathi Biswas & Biswajit Mondal & Raghunath Pal, 2016. "Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna–Godavari delta region, Andhra Pradesh, east coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1635-1655, December.
    9. Chandra Shekhar Dwivedi & Shiva Teja Pampattiwar & Arvind Chandra Pandey & Bikash Ranjan Parida & Debashis Mitra & Navneet Kumar, 2023. "Characterization of the Coastal Vulnerability in Different Geological Settings: A Comparative Study on Kerala and Tamil Nadu Coasts Using FuzzyAHP," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    10. Anitha Parthasarathy & Usha Natesan, 2015. "Coastal vulnerability assessment: a case study on erosion and coastal change along Tuticorin, Gulf of Mannar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1713-1729, January.
    11. N. Sudha Rani & A. Satyanarayana & Prasad Bhaskaran, 2015. "Coastal vulnerability assessment studies over India: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 405-428, May.
    12. Md. Islam & Md. Malak & M. Islam, 2013. "Community-based disaster risk and vulnerability models of a coastal municipality in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2083-2103, December.
    13. Komali Kantamaneni & Louis Rice & Komali Yenneti & Luiza C. Campos, 2020. "Assessing the Vulnerability of Agriculture Systems to Climate Change in Coastal Areas: A Novel Index," Sustainability, MDPI, vol. 12(11), pages 1-24, June.
    14. Malay Kumar Pramanik & Poli Dash & Dimple Behal, 2021. "Improving outcomes for socioeconomic variables with coastal vulnerability index under significant sea-level rise: an approach from Mumbai coasts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13819-13853, September.
    15. J. Shaji, 2014. "Coastal sensitivity assessment for Thiruvananthapuram, west coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1369-1392, September.
    16. Namir Domingos Raimundo Lopes & Tianxin Li & Nametso Matomela & Rui Moutinho Sá, 2022. "Coastal vulnerability assessment based on multi-hazards and bio-geophysical parameters. case study - northwestern coastline of Guinea-Bissau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 989-1013, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:2:d:10.1007_s10668-020-00639-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.