IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v48y2025i1d10.1007_s10203-024-00456-y.html
   My bibliography  Save this article

Stochastic optimal control problems with delays in the state and in the control via viscosity solutions and applications to optimal advertising and optimal investment problems

Author

Listed:
  • Filippo Feo

    (Politecnico di Milano
    Universitá Luiss Guido Carli)

Abstract

In this manuscript we consider optimal control problems of stochastic differential equations with delays in the state and in the control. First, we prove an equivalent Markovian reformulation on Hilbert spaces of the state equation. Then, using the dynamic programming approach for infinite-dimensional systems, we prove that the value function is the unique viscosity solution of the infinite-dimensional Hamilton-Jacobi-Bellman equation. We apply these results to problems coming from economics: stochastic optimal advertising problems and stochastic optimal investment problems with time-to-build.

Suggested Citation

  • Filippo Feo, 2025. "Stochastic optimal control problems with delays in the state and in the control via viscosity solutions and applications to optimal advertising and optimal investment problems," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 329-359, June.
  • Handle: RePEc:spr:decfin:v:48:y:2025:i:1:d:10.1007_s10203-024-00456-y
    DOI: 10.1007/s10203-024-00456-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-024-00456-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-024-00456-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    2. M. Bambi & G. Fabbri & F. Gozzi, 2012. "Optimal policy and consumption smoothing effects in the time-to-build AK model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 635-669, August.
    3. Fabbri Giorgio & Federico Salvatore, 2014. "On the Infinite-Dimensional Representation of Stochastic Controlled Systems with Delayed Control in the Diffusion Term," Mathematical Economics Letters, De Gruyter, vol. 2(3-4), pages 33-43, November.
    4. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    5. Mauro Bambi & Cristina Girolami & Salvatore Federico & Fausto Gozzi, 2017. "Generically distributed investments on flexible projects and endogenous growth," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(2), pages 521-558, February.
    6. Djehiche, Boualem & Gozzi, Fausto & Zanco, Giovanni & Zanella, Margherita, 2022. "Optimal portfolio choice with path dependent benchmarked labor income: A mean field model," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 48-85.
    7. Frédéric Zumer & Jacques Le Cacheux & Marc Flandreau, 1998. "Stability without a pact? Lessons from the European Gold Standard, 1880-1913," Sciences Po publications n°98-01, Sciences Po.
    8. F. Gozzi & C. Marinelli & S. Savin, 2009. "On Controlled Linear Diffusions with Delay in a Model of Optimal Advertising under Uncertainty with Memory Effects," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 291-321, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippo de Feo & Salvatore Federico & Andrzej 'Swik{e}ch, 2023. "Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models," Papers 2302.08809, arXiv.org.
    2. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
    3. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Papers 2102.09851, arXiv.org, revised Feb 2021.
    4. William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Post-Print hal-03145949, HAL.
    5. William Lefebvre & Enzo Miller, 2021. "Linear-Quadratic Stochastic Delayed Control and Deep Learning Resolution," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 134-168, October.
    6. Cristina Di Girolami & Mauro Rosestolato, 2025. "Representation of stochastic optimal control problems with delay in the control variable," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 361-380, June.
    7. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    8. Fabbri, Giorgio, 2017. "International borrowing without commitment and informational lags: Choice under uncertainty," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 103-114.
    9. René Carmona & Jean-Pierre Fouque & Seyyed Mostafa Mousavi & Li-Hsien Sun, 2018. "Systemic Risk and Stochastic Games with Delay," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 366-399, November.
    10. Enrico Biffis & Fausto Gozzi & Cecilia Prosdocimi, 2020. "Optimal portfolio choice with path dependent labor income: the infinite horizon case," Papers 2002.00201, arXiv.org.
    11. Fabbri Giorgio & Federico Salvatore, 2014. "On the Infinite-Dimensional Representation of Stochastic Controlled Systems with Delayed Control in the Diffusion Term," Mathematical Economics Letters, De Gruyter, vol. 2(3-4), pages 33-43, November.
    12. Frédéric Zumer & Jacques Le Cacheux & Marc Flandreau, 1998. "Stability without a pact? Lessons from the European Gold Standard, 1880-1913," Sciences Po publications n°98-01, Sciences Po.
    13. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2015. "Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation," Finance and Stochastics, Springer, vol. 19(2), pages 415-448, April.
    14. Giorgio Fabbri & Silvia Faggian & Salvatore Federico & Fausto Gozzi, 2025. "Optimal Control in Infinite Dimensional Spaces and Economic Modeling: State of the Art and Perspectives," Working Papers 2025: 16, Department of Economics, University of Venice "Ca' Foscari".
    15. Meng Wang, 2025. "Maximum Principle for Optimal Control of Mean-Field Backward Doubly SDEs with Delay," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-24, April.
    16. Olivier Menoukeu Pamen, 2015. "Optimal Control for Stochastic Delay Systems Under Model Uncertainty: A Stochastic Differential Game Approach," Journal of Optimization Theory and Applications, Springer, vol. 167(3), pages 998-1031, December.
    17. Jiequn Han & Ruimeng Hu, 2021. "Recurrent Neural Networks for Stochastic Control Problems with Delay," Papers 2101.01385, arXiv.org, revised Jun 2021.
    18. Salvatore Federico, 2011. "A stochastic control problem with delay arising in a pension fund model," Finance and Stochastics, Springer, vol. 15(3), pages 421-459, September.
    19. Cristiano Ricci, 2023. "A non-invariance result for the spatial AK model," Papers 2311.06811, arXiv.org.
    20. Cristiano Ricci, 2025. "A non-invariance result for the spatial AK model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 48(1), pages 465-484, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:48:y:2025:i:1:d:10.1007_s10203-024-00456-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.