Author
Abstract
Companies are looking to data anonymization research – including differential private and synthetic data methods – for simple and straightforward compliance solutions. But data anonymization has not taken off in practice because it is anything but simple to implement. For one, it requires making complex choices which are case dependent, such as the domain of the dataset to anonymize; the units to protect; the scope where the data protection should extend to; and the standard of protection. Each variation of these choices changes the very meaning, as well as the practical implications, of differential privacy (or of any other measure of data anonymization). Yet differential privacy is frequently being branded as the same privacy guarantee regardless of variations in these choices. Some data anonymization methods can be effective, but only when the insights required are much larger than the unit of protection. Given that businesses care about profitability, any solution must preserve the patterns between a firm’s data and that profitability. As a result, data anonymization solutions usually need to be bespoke and case-specific, which reduces their scalability. Companies should not expect easy wins, but rather recognize that anonymization is just one approach to data privacy with its own particular advantages and drawbacks, while the best strategies jointly leverage the full range of approaches to data privacy and security in combination.
Suggested Citation
Matthew J. Schneider & James Bailie & Dawn Iacobucci, 2025.
"Why Data Anonymization Has Not Taken Off,"
Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 12(1), pages 1-8, December.
Handle:
RePEc:spr:custns:v:12:y:2025:i:1:d:10.1007_s40547-025-00158-5
DOI: 10.1007/s40547-025-00158-5
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:custns:v:12:y:2025:i:1:d:10.1007_s40547-025-00158-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.