IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v89y2024i3d10.1007_s10589-024-00608-1.html
   My bibliography  Save this article

MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization

Author

Listed:
  • Mehri Rashidi

    (Amirkabir University of Technology)

  • Majid Soleimani-damaneh

    (University of Tehran)

Abstract

In this paper, we propose a method for solving constrained nonsmooth multiobjective optimization problems which is based on a Sequential Quadratic Programming (SQP) type approach and the Gradient Sampling (GS) technique. We consider the multiobjective problems with noncovex and nonsmooth objective and constraint functions. The problem functions are assumed to be locally Lipschitz. Such problems arise in important applications, many having (weak) Pareto solutions at points of nondifferentiability of the problem functions. In our algorithm, a penalty function is applied to regularize the constraints, GS is employed to overcome the subdifferential calculation burden and make the search direction computation effective in nonsmooth regions, and SQP is used for getting a local linearization. We prove the global convergence properties of our algorithm to the stationary points which approximate (weak) Pareto front. Furthermore, we illustrate the ability and efficiency of the proposed method via a MATLAB implementation on several tests problems and compare it with some existing algorithms.

Suggested Citation

  • Mehri Rashidi & Majid Soleimani-damaneh, 2024. "MultiSQP-GS: a sequential quadratic programming algorithm via gradient sampling for nonsmooth constrained multiobjective optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 729-767, December.
  • Handle: RePEc:spr:coopap:v:89:y:2024:i:3:d:10.1007_s10589-024-00608-1
    DOI: 10.1007/s10589-024-00608-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00608-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00608-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    2. Jean-Pierre Aubin, 1984. "Lipschitz Behavior of Solutions to Convex Minimization Problems," Mathematics of Operations Research, INFORMS, vol. 9(1), pages 87-111, February.
    3. Neculai Andrei, 2022. "Modern Numerical Nonlinear Optimization," Springer Optimization and Its Applications, Springer, number 978-3-031-08720-2, December.
    4. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, July.
    5. Javad Koushki & Kaisa Miettinen & Majid Soleimani-damaneh, 2022. "LR-NIMBUS: an interactive algorithm for uncertain multiobjective optimization with lightly robust efficient solutions," Journal of Global Optimization, Springer, vol. 83(4), pages 843-863, August.
    6. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    7. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamilu Yahaya & Poom Kumam & Mahmoud Muhammad Yahaya, 2025. "A New Hybrid Conjugate Gradient Method Based on a Convex Combination for Multiobjective Optimization," SN Operations Research Forum, Springer, vol. 6(2), pages 1-26, June.
    2. Andrea Cristofari & Marianna Santis & Stefano Lucidi, 2024. "On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 126-145, October.
    3. G. A. Carrizo & N. S. Fazzio & M. D. Sánchez & M. L. Schuverdt, 2024. "Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 89(3), pages 769-803, December.
    4. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    5. Jiawei Chen & Yu-Hong Dai, 2023. "Multiobjective optimization with least constraint violation: optimality conditions and exact penalization," Journal of Global Optimization, Springer, vol. 87(2), pages 807-830, November.
    6. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    7. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    8. Yong Zhao & Wang Chen & Xinmin Yang, 2024. "Adaptive Sampling Stochastic Multigradient Algorithm for Stochastic Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 215-241, January.
    9. T. D. Chuong & V. Jeyakumar, 2025. "Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming," Annals of Operations Research, Springer, vol. 346(2), pages 895-916, March.
    10. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    11. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    12. Duong Thi Kim Huyen & Jen-Chih Yao & Nguyen Dong Yen, 2019. "Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 1: Lipschitzian Stability," Journal of Optimization Theory and Applications, Springer, vol. 180(1), pages 91-116, January.
    13. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    14. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    15. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    16. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    19. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    20. dos Santos, Daniela Scherer & Klamroth, Kathrin & Martins, Pedro & Paquete, Luís, 2025. "Solving the Multiobjective Quasi-clique Problem," European Journal of Operational Research, Elsevier, vol. 323(2), pages 409-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:89:y:2024:i:3:d:10.1007_s10589-024-00608-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.