IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v87y2024i3d10.1007_s10589-023-00545-5.html
   My bibliography  Save this article

Internet traffic tensor completion with tensor nuclear norm

Author

Listed:
  • Can Li

    (South China Normal University
    Honghe University)

  • Yannan Chen

    (South China Normal University)

  • Dong-Hui Li

    (South China Normal University)

Abstract

The incomplete data is a common phenomenon in traffic network because of the high measurement cost, the failure of data collection systems and unavoidable transmission loss. Recovering the whole data from incomplete data is a very important task in internet engineering and management. In this paper, we adopt the low-rank tensor completion model equipped with tensor nuclear norm to reconstruct the internet traffic data. Besides using a low rank tensor to capture the global information of internet traffic data, we also utilize spatial correlation and periodicity to characterize the local information. The resulting model is a convex and separable optimization. Then, a proximal alternating direction method of multipliers is customized to solve the optimization problem, where all subproblems have closed-form solutions. Convergence analysis of the algorithm is given without any assumptions. Numerical experiments on Abilene and GÉANT datasets with random missing and structured loss show that the proposed model and algorithm perform better than other existing algorithms.

Suggested Citation

  • Can Li & Yannan Chen & Dong-Hui Li, 2024. "Internet traffic tensor completion with tensor nuclear norm," Computational Optimization and Applications, Springer, vol. 87(3), pages 1033-1057, April.
  • Handle: RePEc:spr:coopap:v:87:y:2024:i:3:d:10.1007_s10589-023-00545-5
    DOI: 10.1007/s10589-023-00545-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00545-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00545-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    3. Chen Ling & Gaohang Yu & Liqun Qi & Yanwei Xu, 2021. "T-product factorization method for internet traffic data completion with spatio-temporal regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 883-913, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    3. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    4. Jie Wang & Shenglong Hu & Zheng-Hai Huang, 2018. "Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 120-136, January.
    5. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    6. Elizabeth Hellier & Kirsteen Aldrich & Daniel B. Wright & Denny Daunt & Judy Edworthy, 2007. "A Multi Dimensional Analysis of Warning Signal Words," Journal of Risk Research, Taylor & Francis Journals, vol. 10(3), pages 323-338, April.
    7. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    8. Jad Beyhum & Eric Gautier, 2020. "Factor and factor loading augmented estimators for panel regression," Working Papers hal-02957008, HAL.
    9. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    10. Moukam, Claudiane Yanick & Atewamba, Calvin, 2023. "Incorporating expert knowledge in the estimate of farmers’ opportunity cost of supplying environmental services in rural Cameroon," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 12(3), October.
    11. Shenglong Hu & Jie Wang & Zheng-Hai Huang, 2018. "Error Bounds for the Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 983-1000, December.
    12. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    13. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    14. Forrest Young & Yoshio Takane & Rostyslaw Lewyckyj, 1978. "Three notes on ALSCAL," Psychometrika, Springer;The Psychometric Society, vol. 43(3), pages 433-435, September.
    15. Herbert Marsh & Robert Boik, 1993. "Reviews," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 145-152, March.
    16. Alwin Stegeman & Jos Berge & Lieven Lathauwer, 2006. "Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 219-229, June.
    17. Monica Billio & Roberto Casarin & Matteo Iacopini, 2024. "Bayesian Markov-Switching Tensor Regression for Time-Varying Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 109-121, January.
    18. Paul Dickes & Alessio Fusco & Eric Marlier, 2010. "Structure of National Perceptions of Social Needs Across EU Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 95(1), pages 143-167, January.
    19. Michailidis, George & de Leeuw, Jan, 2000. "Multilevel homogeneity analysis with differential weighting," Computational Statistics & Data Analysis, Elsevier, vol. 32(3-4), pages 411-442, January.
    20. Massimiliano Marcellino & Andrea Renzetti & Tommaso Tornese, 2024. "Firm Heterogeneity and Macroeconomic Fluctuations: a Functional VAR model," Papers 2411.05695, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:87:y:2024:i:3:d:10.1007_s10589-023-00545-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.