IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i3d10.1007_s10589-023-00509-9.html
   My bibliography  Save this article

First order inertial optimization algorithms with threshold effects associated with dry friction

Author

Listed:
  • Samir Adly

    (Université de Limoges)

  • Hedy Attouch

    (Université Montpellier, CNRS, Place Eugène Bataillon)

  • Manh Hung Le

    (Université de Limoges)

Abstract

In a Hilbert space setting, we consider new first order optimization algorithms which are obtained by temporal discretization of a damped inertial autonomous dynamic involving dry friction. The function f to be minimized is assumed to be differentiable (not necessarily convex). The dry friction potential function $$ \varphi $$ φ , which has a sharp minimum at the origin, enters the algorithm via its proximal mapping, which acts as a soft thresholding operator on the sum of the velocity and the gradient terms. After a finite number of steps, the structure of the algorithm changes, losing its inertial character to become the steepest descent method. The geometric damping driven by the Hessian of f makes it possible to control and attenuate the oscillations. The algorithm generates convergent sequences when f is convex, and in the nonconvex case when f satisfies the Kurdyka–Lojasiewicz property. The convergence results are robust with respect to numerical errors, and perturbations. The study is then extended to the case of a nonsmooth convex function f, in which case the algorithm involves the proximal operators of f and $$\varphi $$ φ separately. Applications are given to the Lasso problem and nonsmooth d.c. programming.

Suggested Citation

  • Samir Adly & Hedy Attouch & Manh Hung Le, 2023. "First order inertial optimization algorithms with threshold effects associated with dry friction," Computational Optimization and Applications, Springer, vol. 86(3), pages 801-843, December.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00509-9
    DOI: 10.1007/s10589-023-00509-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00509-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00509-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bolte, Jérôme & Castera, Camille & Pauwels, Edouard & Févotte, Cédric, 2019. "An Inertial Newton Algorithm for Deep Learning," TSE Working Papers 19-1043, Toulouse School of Economics (TSE).
    2. Le An & Pham Tao, 2005. "The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems," Annals of Operations Research, Springer, vol. 133(1), pages 23-46, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William W. Hager & R. Tyrrell Rockafellar & Vladimir M. Veliov, 2023. "Preface to Asen L. Dontchev Memorial Special Issue," Computational Optimization and Applications, Springer, vol. 86(3), pages 795-800, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    2. Hoai An Le Thi & Van Ngai Huynh & Tao Pham Dinh, 2018. "Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 103-126, October.
    3. João Carlos O. Souza & Paulo Roberto Oliveira & Antoine Soubeyran, 2016. "Global convergence of a proximal linearized algorithm for difference of convex functions," Post-Print hal-01440298, HAL.
    4. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    5. Laura Girometti & Martin Huska & Alessandro Lanza & Serena Morigi, 2024. "Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1286-1325, September.
    6. José G. Gómez-García & Jalal Fadili & Christophe Chesneau, 2024. "Learning CHARME models with neural networks," Statistical Papers, Springer, vol. 65(3), pages 1337-1374, May.
    7. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    8. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    9. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    10. Ming Huang & Li-Ping Pang & Zun-Quan Xia, 2014. "The space decomposition theory for a class of eigenvalue optimizations," Computational Optimization and Applications, Springer, vol. 58(2), pages 423-454, June.
    11. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    12. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    13. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    14. H. Le Thi & A. Vaz & L. Vicente, 2012. "Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 190-214, April.
    15. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    16. Jean-Paul Penot, 2011. "The directional subdifferential of the difference of two convex functions," Journal of Global Optimization, Springer, vol. 49(3), pages 505-519, March.
    17. Annabella Astorino & Antonio Fuduli & Manlio Gaudioso, 2012. "Margin maximization in spherical separation," Computational Optimization and Applications, Springer, vol. 53(2), pages 301-322, October.
    18. Gregorio M. Sempere & Welington Oliveira & Johannes O. Royset, 2025. "A Proximal-Type Method for Nonsmooth and Nonconvex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 204(3), pages 1-30, March.
    19. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    20. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00509-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.