IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i3d10.1007_s10589-020-00203-0.html
   My bibliography  Save this article

Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization

Author

Listed:
  • Ernesto G. Birgin

    (University of São Paulo)

Abstract

No abstract is available for this item.

Suggested Citation

  • Ernesto G. Birgin, 2020. "Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 615-619, July.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00203-0
    DOI: 10.1007/s10589-020-00203-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00203-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00203-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhongwen Chen & Yu-Hong Dai & Jiangyan Liu, 2020. "A penalty-free method with superlinear convergence for equality constrained optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 801-833, July.
    2. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    3. Yldenilson Torres Almeida & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos de Oliveira Souza, 2020. "A modified proximal point method for DC functions on Hadamard manifolds," Computational Optimization and Applications, Springer, vol. 76(3), pages 649-673, July.
    4. Stefania Bellavia & Nataša Krejić & Benedetta Morini, 2020. "Inexact restoration with subsampled trust-region methods for finite-sum minimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 701-736, July.
    5. M. A. Diniz-Ehrhardt & D. G. Ferreira & S. A. Santos, 2020. "Applying the pattern search implicit filtering algorithm for solving a noisy problem of parameter identification," Computational Optimization and Applications, Springer, vol. 76(3), pages 835-866, July.
    6. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    7. Juan Pablo Luna & Claudia Sagastizábal & Mikhail Solodov, 2020. "A class of Benders decomposition methods for variational inequalities," Computational Optimization and Applications, Springer, vol. 76(3), pages 935-959, July.
    8. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    9. Luís Felipe Bueno & Gabriel Haeser & Luiz-Rafael Santos, 2020. "Towards an efficient augmented Lagrangian method for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 767-800, July.
    10. L. F. Bueno & G. Haeser & F. Lara & F. N. Rojas, 2020. "An Augmented Lagrangian method for quasi-equilibrium problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 737-766, July.
    11. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    2. Lucy E. Morgan & Luke Rhodes-Leader & Russell R. Barton, 2022. "Reducing and Calibrating for Input Model Bias in Computer Simulation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2368-2382, July.
    3. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    4. R. Andreani & E. H. Fukuda & G. Haeser & D. O. Santos & L. D. Secchin, 2021. "On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 79(3), pages 633-648, July.
    5. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    6. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
    7. Xinghua Tao & Nan Mo & Jianbo Qin & Xiaozhe Yang & Linfei Yin & Likun Hu, 2023. "Parallel Multi-Layer Monte Carlo Optimization Algorithm for Doubly Fed Induction Generator Controller Parameters Optimization," Energies, MDPI, vol. 16(19), pages 1-20, October.
    8. Harry Oviedo, 2023. "Proximal Point Algorithm with Euclidean Distance on the Stiefel Manifold," Mathematics, MDPI, vol. 11(11), pages 1-17, May.
    9. Stefania Bellavia & Gianmarco Gurioli & Benedetta Morini & Philippe Louis Toint, 2023. "The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 700-729, February.
    10. Stefania Bellavia & Nataša Krejić & Benedetta Morini & Simone Rebegoldi, 2023. "A stochastic first-order trust-region method with inexact restoration for finite-sum minimization," Computational Optimization and Applications, Springer, vol. 84(1), pages 53-84, January.
    11. Luyun Wang & Bo Zhou, 2023. "A Modified Gradient Method for Distributionally Robust Logistic Regression over the Wasserstein Ball," Mathematics, MDPI, vol. 11(11), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00203-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.