IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i2d10.1007_s10957-025-02772-8.html
   My bibliography  Save this article

Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Maps of Finite Cardinality

Author

Listed:
  • Debdas Ghosh

    (Indian Institute of Technology (BHU))

  • Ravi Raushan

    (Indian Institute of Technology (BHU))

  • Zai-Yun Peng

    (Yunnan Normal University
    Yunnan Normal University
    Chongqing JiaoTong University)

  • Jen-Chih Yao

    (China Medical University
    Academy of Romanian Scientists)

Abstract

This article presents nonlinear conjugate gradient methods for finding local weakly minimal points of set-valued optimization problems under a lower set less ordering relation. The set-valued objective map of the optimization problem under consideration is defined by finitely many continuously differentiable vector-valued functions. For such optimization problems, at first, we propose a general scheme for nonlinear conjugate gradient methods and then introduce Dai-Yuan, Polak-Ribière-Polyak, and Hestenes-Stiefel conjugate gradient parameters for set-valued maps. Toward deriving the general scheme, we introduce a condition of sufficient decrease and Wolfe line searches for set-valued maps. For a given sequence of descent directions of a set-valued map, it is found that if the proposed standard Wolfe line search technique is employed, then the generated sequence of iterates for set optimization follows a Zoutendijk-like condition. With the help of the derived Zoutendijk-like condition, we report that all the proposed nonlinear conjugate gradient schemes are globally convergent under usual assumptions. It is important to note that the ordering cone used in the entire study is not restricted to be finitely generated, and no regularity assumption on the solution set of the problem is required for any of the reported convergence analyses. Finally, we demonstrate the performance of the proposed methods through numerical experiments. In the numerical experiments, we demonstrate the effectiveness of the proposed methods not only on the commonly used test instances for set optimization but also on a few newly introduced problems under general ordering cones that are neither nonnegative hyper-octant nor finitely generated.

Suggested Citation

  • Debdas Ghosh & Ravi Raushan & Zai-Yun Peng & Jen-Chih Yao, 2025. "Nonlinear Conjugate Gradient Methods for Optimization of Set-Valued Maps of Finite Cardinality," Journal of Optimization Theory and Applications, Springer, vol. 207(2), pages 1-43, November.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02772-8
    DOI: 10.1007/s10957-025-02772-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02772-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02772-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gabriele Eichfelder & Julia Niebling & Stefan Rocktäschel, 2020. "An algorithmic approach to multiobjective optimization with decision uncertainty," Journal of Global Optimization, Springer, vol. 77(1), pages 3-25, May.
    2. Gemayqzel Bouza & Ernest Quintana & Christiane Tammer, 2021. "A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 711-743, September.
    3. Schmidt, M. & Schöbel, Anita & Thom, Lisa, 2019. "Min-ordering and max-ordering scalarization methods for multi-objective robust optimization," European Journal of Operational Research, Elsevier, vol. 275(2), pages 446-459.
    4. Jonas Ide & Elisabeth Köbis, 2014. "Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 99-127, August.
    5. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    6. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    7. Jiang, Ling & Cao, Jinde & Xiong, Lianglin, 2019. "Generalized multiobjective robustness and relations to set-valued optimization," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 599-608.
    8. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    9. Johannes Jahn, 2015. "A derivative-free descent method in set optimization," Computational Optimization and Applications, Springer, vol. 60(2), pages 393-411, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gemayqzel Bouza & Ernest Quintana & Christiane Tammer, 2021. "A Steepest Descent Method for Set Optimization Problems with Set-Valued Mappings of Finite Cardinality," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 711-743, September.
    2. Eichfelder, Gabriele & Quintana, Ernest, 2024. "Set-based robust optimization of uncertain multiobjective problems via epigraphical reformulations," European Journal of Operational Research, Elsevier, vol. 313(3), pages 871-882.
    3. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    4. Fakhar, Majid & Mahyarinia, Mohammad Reza & Zafarani, Jafar, 2018. "On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 265(1), pages 39-48.
    5. Yu Chen & Helong Chen & Zhibin Zhu, 2026. "A Three-Term Conjugate Gradient-Type Method with Sufficient Descent Property for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 208(1), pages 1-42, January.
    6. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "A Unified Characterization of Multiobjective Robustness via Separation," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 86-102, October.
    7. Kaiqiang An & Guiyu Zhao & Jinjun Li & Jingsong Tian & Lihua Wang & Liang Xian & Chen Chen, 2023. "Best-Case Scenario Robust Portfolio: Evidence from China Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 297-322, June.
    8. Guoling Wang & Miao Wang & Hui Yang & Guanghui Yang & Chun Wang, 2024. "Existence of $$\alpha $$ α -Robust Weak Nash Equilibria for Leader–Follower Population Games with Fuzzy Parameters," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2739-2758, December.
    9. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.
    10. Pätzold, Julius & Schöbel, Anita, 2020. "Approximate cutting plane approaches for exact solutions to robust optimization problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 20-30.
    11. Pornpimon Boriwan & Thanathorn Phoka & Narin Petrot, 2022. "The Lightly Robust Max-Ordering Solution Concept for Uncertain Multiobjective Optimization Problems: An Ambulance Location Problem with Unavailability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    12. Jamilu Yahaya & Poom Kumam & Mahmoud Muhammad Yahaya, 2025. "A New Hybrid Conjugate Gradient Method Based on a Convex Combination for Multiobjective Optimization," SN Operations Research Forum, Springer, vol. 6(2), pages 1-26, June.
    13. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    14. Jian Chen & Liping Tang & Xinmin Yang, 2025. "A Subspace Minimization Barzilai-Borwein Method for Multiobjective Optimization Problems," Computational Optimization and Applications, Springer, vol. 92(1), pages 155-178, September.
    15. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    16. Jiawei Chen & Yushan Bai & Guolin Yu & Xiaoqing Ou & Xiaolong Qin, 2025. "A PRP Type Conjugate Gradient Method Without Truncation for Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-30, January.
    17. Bokrantz, Rasmus & Fredriksson, Albin, 2017. "Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 262(2), pages 682-692.
    18. Chen Chen & Yu Wei, 2019. "Robust multiobjective portfolio optimization: a set order relations approach," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 21-49, July.
    19. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    20. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02772-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.