IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems

Listed author(s):
  • Ting-Jang Shiu


  • Soon-Yi Wu


Registered author(s):

    In this paper, we present an algorithm to solve nonlinear semi-infinite programming (NSIP) problems. To deal with the nonlinear constraint, Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007 ) suggest an adaptive convexification relaxation to approximate the nonlinear constraint function. The αBB method, used widely in global optimization, is applied to construct the convexification relaxation. We then combine the idea of the cutting plane method with the convexification relaxation to propose a new algorithm to solve NSIP problems. With some given tolerances, our algorithm terminates in a finite number of iterations and obtains an approximate stationary point of the NSIP problems. In addition, some NSIP application examples are implemented by the method proposed in this paper, such as the proportional-integral-derivative controller design problem and the nonlinear finite impulse response filter design problem. Based on our numerical experience, we demonstrate that our algorithm enhances the computational speed for solving NSIP problems. Copyright Springer Science+Business Media, LLC 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 53 (2012)
    Issue (Month): 1 (September)
    Pages: 91-113

    in new window

    Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113
    DOI: 10.1007/s10589-011-9452-9
    Contact details of provider: Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. K.L. Teo & X.Q. Yang & L.S. Jennings, 2000. "Computational Discretization Algorithms for Functional Inequality Constrained Optimization," Annals of Operations Research, Springer, vol. 98(1), pages 215-234, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.