IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i1p91-113.html
   My bibliography  Save this article

Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems

Author

Listed:
  • Ting-Jang Shiu

    ()

  • Soon-Yi Wu

    ()

Abstract

In this paper, we present an algorithm to solve nonlinear semi-infinite programming (NSIP) problems. To deal with the nonlinear constraint, Floudas and Stein (SIAM J. Optim. 18:1187–1208, 2007 ) suggest an adaptive convexification relaxation to approximate the nonlinear constraint function. The αBB method, used widely in global optimization, is applied to construct the convexification relaxation. We then combine the idea of the cutting plane method with the convexification relaxation to propose a new algorithm to solve NSIP problems. With some given tolerances, our algorithm terminates in a finite number of iterations and obtains an approximate stationary point of the NSIP problems. In addition, some NSIP application examples are implemented by the method proposed in this paper, such as the proportional-integral-derivative controller design problem and the nonlinear finite impulse response filter design problem. Based on our numerical experience, we demonstrate that our algorithm enhances the computational speed for solving NSIP problems. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ting-Jang Shiu & Soon-Yi Wu, 2012. "Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 53(1), pages 91-113, September.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113
    DOI: 10.1007/s10589-011-9452-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9452-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K.L. Teo & X.Q. Yang & L.S. Jennings, 2000. "Computational Discretization Algorithms for Functional Inequality Constrained Optimization," Annals of Operations Research, Springer, vol. 98(1), pages 215-234, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:91-113. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.