IDEAS home Printed from
   My bibliography  Save this article

An efficient simultaneous method for the constrained multiple-sets split feasibility problem


  • Wenxing Zhang


  • Deren Han


  • Xiaoming Yuan



The multiple-sets split feasibility problem (MSFP) captures various applications arising in many areas. Recently, by introducing a function measuring the proximity to the involved sets, Censor et al. proposed to solve the MSFP via minimizing the proximity function, and they developed a class of simultaneous methods to solve the resulting constrained optimization model numerically. In this paper, by combining the ideas of the proximity function and the operator splitting methods, we propose an efficient simultaneous method for solving the constrained MSFP. The efficiency of the new method is illustrated by some numerical experiments. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Wenxing Zhang & Deren Han & Xiaoming Yuan, 2012. "An efficient simultaneous method for the constrained multiple-sets split feasibility problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 825-843, July.
  • Handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:825-843
    DOI: 10.1007/s10589-011-9429-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bing-Sheng He, 2009. "Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities," Computational Optimization and Applications, Springer, vol. 42(2), pages 195-212, March.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:825-843. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.