IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Properties and construction of NCP functions

  • Aurél Galántai

    ()

Registered author(s):

    The nonlinear complementarity or NCP functions were introduced by Mangasarian and these functions are proved to be useful in constrained optimization and elsewhere. Interestingly enough there are only two general methods to derive such functions, while the known or used NCP functions are either individual constructions or modifications of the few individual NCP functions such as the Fischer-Burmeister function. In the paper we analyze the elementary properties of NCP functions and the various techniques used to obtain such functions from old ones. We also prove some new nonexistence results on the possible forms of NCP functions. Then we develop and analyze several new methods for the construction of nonlinear complementarity functions that are based on various geometric arguments or monotone transformations. The appendix of the paper contains the list and source of the known NCP functions. Copyright Springer Science+Business Media, LLC 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s10589-011-9428-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Computational Optimization and Applications.

    Volume (Year): 52 (2012)
    Issue (Month): 3 (July)
    Pages: 805-824

    as
    in new window

    Handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:805-824
    Contact details of provider: Web page: http://www.springer.com/math/journal/10589

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Jein-Shan Chen, 2007. "On Some Ncp-Functions Based On The Generalized Fischer–Burmeister Function," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(03), pages 401-420.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:52:y:2012:i:3:p:805-824. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.