IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-023-01355-3.html
   My bibliography  Save this article

A flexible two-piece normal dynamic linear model

Author

Listed:
  • Emanuele Aliverti

    (Università di Padova)

  • Reinaldo B. Arellano-Valle

    (Pontificia Universidad Católica de Chile)

  • Fereshteh Kahrari

    (Università di Padova)

  • Bruno Scarpa

    (Università di Padova
    Università di Padova)

Abstract

We construct a flexible dynamic linear model for the analysis and prediction of multivariate time series, assuming a two-piece normal initial distribution for the state vector. We derive a novel Kalman filter for this model, obtaining a two components mixture as predictive and filtering distributions. In order to estimate the covariance of the error sequences, we develop a Gibbs-sampling algorithm to perform Bayesian inference. The proposed approach is validated and compared with a Gaussian dynamic linear model in simulations and on a real data set.

Suggested Citation

  • Emanuele Aliverti & Reinaldo B. Arellano-Valle & Fereshteh Kahrari & Bruno Scarpa, 2023. "A flexible two-piece normal dynamic linear model," Computational Statistics, Springer, vol. 38(4), pages 2075-2096, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-023-01355-3
    DOI: 10.1007/s00180-023-01355-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01355-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01355-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    2. T. R. A. Corns & S. E. Satchell, 2007. "Skew Brownian Motion and Pricing European Options," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 523-544.
    3. Arellano-Valle, Reinaldo B. & Azzalini, Adelchi & Ferreira, Clécio S. & Santoro, Karol, 2020. "A two-piece normal measurement error model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Fasano, Augusto & Rebaudo, Giovanni & Durante, Daniele & Petrone, Sonia, 2021. "A closed-form filter for binary time series," MPRA Paper 122349, University Library of Munich, Germany.
    5. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    6. Naveau, Philippe & Genton, Marc G. & Shen, Xilin, 2005. "A skewed Kalman filter," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 382-400, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinaldo B. Arellano-Valle & Javier E. Contreras-Reyes & Freddy O. López Quintero & Abel Valdebenito, 2019. "A skew-normal dynamic linear model and Bayesian forecasting," Computational Statistics, Springer, vol. 34(3), pages 1055-1085, September.
    2. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.
    3. Hu, Yuan & Lindquist, W. Brent & Rachev, Svetlozar T. & Shirvani, Abootaleb & Fabozzi, Frank J., 2022. "Market complete option valuation using a Jarrow-Rudd pricing tree with skewness and kurtosis," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    4. Luis H. R. Alvarez E. & Paavo Salminen, 2017. "Timing in the presence of directional predictability: optimal stopping of skew Brownian motion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
    5. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    6. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    7. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    8. Rezaie, Javad & Eidsvik, Jo, 2014. "Kalman filter variants in the closed skew normal setting," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 1-14.
    9. Tian, Yingxu & Zhang, Haoyan, 2018. "Skew CIR process, conditional characteristic function, moments and bond pricing," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 230-238.
    10. Karling, Maicon J. & Durante, Daniele & Genton, Marc G., 2024. "Conjugacy properties of multivariate unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
    11. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
    12. Uliha, Gábor, 2016. "Az olajár gyengülő makrogazdasági hatásai. Két versengő elmélet szintézise [Weakening macroeconomic effects of the oil price. A synthesis of two competing theories]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 787-818.
    13. J. A. Jiménez & V. Arunachalam & G. M. Serna, 2015. "Option Pricing Based On A Log–Skew–Normal Mixture," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-22, December.
    14. Hussain, Sultan & Arif, Hifsa & Noorullah, Muhammad & Pantelous, Athanasios A., 2023. "Pricing American Options under Azzalini Ito-McKean Skew Brownian Motions," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    15. Jun Maeda & Saul D. Jacka, 2017. "An Optimal Stopping Problem Modeling Technical Analysis," Papers 1707.05253, arXiv.org, revised Mar 2020.
    16. Naderi, Mehrdad & Tamandi, Mostafa & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2024. "Three-way data clustering based on the mean-mixture of matrix-variate normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    17. Xiaoyang Zhuo & Olivier Menoukeu-Pamen, 2017. "Efficient Piecewise Trees For The Generalized Skew Vasicek Model With Discontinuous Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    18. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    19. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    20. Yizhou Bai & Zhiyu Guo, 2019. "An Empirical Investigation to the “Skew” Phenomenon in Stock Index Markets: Evidence from the Nikkei 225 and Others," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-023-01355-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.