IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i3d10.1007_s00180-021-01167-3.html
   My bibliography  Save this article

New approximate Bayesian computation algorithm for censored data

Author

Listed:
  • Kristin McCullough

    (Grand View University)

  • Tatiana Dmitrieva

    (Advocate Aurora Health)

  • Nader Ebrahimi

    (Northern Illinois University)

Abstract

Approximate Bayesian computation refers to a family of algorithms that perform Bayesian inference under intractable likelihoods. In this paper we propose replacing the distance metric in certain algorithms with hypothesis testing. The benefits of which are that summary statistics are no longer required and censoring can be present in the observed data set without needing to simulate any censored data. We illustrate our proposed method through a nanotechnology application in which we estimate the concentration of particles in a liquid suspension. We prove that our method results in an approximation to the true posterior and that the parameter estimates are consistent. We further show, through comparative analysis, that it is more efficient than existing methods for censored data.

Suggested Citation

  • Kristin McCullough & Tatiana Dmitrieva & Nader Ebrahimi, 2022. "New approximate Bayesian computation algorithm for censored data," Computational Statistics, Springer, vol. 37(3), pages 1369-1397, July.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01167-3
    DOI: 10.1007/s00180-021-01167-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01167-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01167-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peihua Qiu & Jun Sheng, 2008. "A two‐stage procedure for comparing hazard rate functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 191-208, February.
    2. Clara Grazian & Brunero Liseo, 2015. "Approximate Bayesian Computation for Copula Estimation," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 111-127.
    3. Z Wang & J K Kim & S Yang, 2018. "Approximate Bayesian inference under informative sampling," Biometrika, Biometrika Trust, vol. 105(1), pages 91-102.
    4. D T Frazier & G M Martin & C P Robert & J Rousseau, 2018. "Asymptotic properties of approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 105(3), pages 593-607.
    5. Mason, Paolo, 2016. "Approximate Bayesian Computation of the occurrence and size of defects in Advanced Gas-cooled nuclear Reactor boilers," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 21-25.
    6. repec:dau:papers:123456789/5724 is not listed on IDEAS
    7. Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
    8. Kristin McCullough & Nader Ebrahimi, 2018. "Approximate Bayesian computation for censored data and its application to reliability assessment," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 419-430, May.
    9. Paul Fearnhead & Dennis Prangle, 2012. "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 419-474, June.
    10. Huimin Li & Dong Han & Yawen Hou & Huilin Chen & Zheng Chen, 2015. "Statistical Inference Methods for Two Crossing Survival Curves: A Comparison of Methods," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    2. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    3. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    4. Luis Alvarez & Cristine Pinto & Vladimir Ponczek, 2022. "Homophily in preferences or meetings? Identifying and estimating an iterative network formation model," Papers 2201.06694, arXiv.org, revised Mar 2024.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    7. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    8. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    9. Menéndez, P. & Fan, Y. & Garthwaite, P.H. & Sisson, S.A., 2014. "Simultaneous adjustment of bias and coverage probabilities for confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 35-44.
    10. Gael M. Martin & Brendan P.M. McCabe & David T. Frazier & Worapree Maneesoonthorn & Christian P. Robert, 2016. "Auxiliary Likelihood-Based Approximate Bayesian Computation in State Space Models," Monash Econometrics and Business Statistics Working Papers 09/16, Monash University, Department of Econometrics and Business Statistics.
    11. Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
    12. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    13. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    14. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.
    15. repec:bla:istatr:v:83:y:2015:i:3:p:405-435 is not listed on IDEAS
    16. Thomas A. Dean & Sumeetpal S. Singh & Ajay Jasra & Gareth W. Peters, 2014. "Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 970-987, December.
    17. Soubeyrand, Samuel & Haon-Lasportes, Emilie, 2015. "Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 84-92.
    18. Chaya Weerasinghe & Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2023. "ABC-based Forecasting in State Space Models," Monash Econometrics and Business Statistics Working Papers 12/23, Monash University, Department of Econometrics and Business Statistics.
    19. David T. Frazier & Gael M. Martin & Christian P. Robert, 2015. "On Consistency of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 19/15, Monash University, Department of Econometrics and Business Statistics.
    20. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    21. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01167-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.