IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i5d10.1007_s10584-023-03530-3.html
   My bibliography  Save this article

Comparison of multimodel ensembles of global and regional climate models projections for extreme precipitation over four major river basins in southern Africa— assessment of the historical simulations

Author

Listed:
  • Sydney Samuel

    (University of Botswana)

  • Alessandro Dosio

    (European Commission, Joint Research Centre (JRC))

  • Kgakgamatso Mphale

    (University of Botswana)

  • Dieudonne Nsadisa Faka

    (OACPS Secretariat)

  • Modise Wiston

    (University of Botswana)

Abstract

This study assesses the performance of large ensembles of global (CMIP5, CMIP6) and regional (CORDEX, CORE) climate models in simulating extreme precipitation over four major river basins (Limpopo, Okavango, Orange, and Zambezi) in southern Africa during the period 1983–2005. The ability of the model ensembles to simulate seasonal extreme precipitation indices is assessed using three high-resolution satellite-based datasets. The results show that all ensembles overestimate the annual cycle of mean precipitation over all basins, although the intermodel spread is large, with CORDEX being the closest to the observed values. Generally, all ensembles overestimate the mean and interannual variability of rainy days (RR1), maximum consecutive wet days (CWD), and heavy and very heavy precipitation days (R10mm and R20mm, respectively) over all basins during all three seasons. Simple daily rainfall intensity (SDII) and the number of consecutive dry days (CDD) are generally underestimated. The lowest Taylor skill scores (TSS) and spatial correlation coefficients (SCC) are depicted for CDD over Limpopo compared with the other indices and basins, respectively. Additionally, the ensembles exhibit the highest normalized standard deviations (NSD) for CWD compared to other indices. The intermodel spread and performance of the RCM ensembles are lower and better, respectively, than those of GCM ensembles (except for the interannual variability of CDD). In particular, CORDEX performs better than CORE in simulating extreme precipitation over all basins. Although the ensemble biases are often within the range of observations, the statistically significant wet biases shown by all ensembles underline the need for bias correction when using these ensembles in impact assessments.

Suggested Citation

  • Sydney Samuel & Alessandro Dosio & Kgakgamatso Mphale & Dieudonne Nsadisa Faka & Modise Wiston, 2023. "Comparison of multimodel ensembles of global and regional climate models projections for extreme precipitation over four major river basins in southern Africa— assessment of the historical simulations," Climatic Change, Springer, vol. 176(5), pages 1-26, May.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03530-3
    DOI: 10.1007/s10584-023-03530-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03530-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03530-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    2. Izidine Pinto & Christopher Lennard & Mark Tadross & Bruce Hewitson & Alessandro Dosio & Grigory Nikulin & Hans-Juergen Panitz & Mxolisi E. Shongwe, 2016. "Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models," Climatic Change, Springer, vol. 135(3), pages 655-668, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thierry C. Fotso-Nguemo & Ismaïla Diallo & Moussa Diakhaté & Derbetini A. Vondou & Mamadou L. Mbaye & Andreas Haensler & Amadou T. Gaye & Clément Tchawoua, 2019. "Projected changes in the seasonal cycle of extreme rainfall events from CORDEX simulations over Central Africa," Climatic Change, Springer, vol. 155(3), pages 339-357, August.
    2. Alessandro Dosio & Christopher Lennard & Jonathan Spinoni, 2022. "Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    3. Swatantra Kumar Dubey & JungJin Kim & Younggu Her & Devesh Sharma & Hanseok Jeong, 2023. "Hydroclimatic Impact Assessment Using the SWAT Model in India—State of the Art Review," Sustainability, MDPI, vol. 15(22), pages 1-40, November.
    4. Babatunde J. Abiodun & Jimmy Adegoke & Abayomi A. Abatan & Chidi A. Ibe & Temitope S. Egbebiyi & Francois Engelbrecht & Izidine Pinto, 2017. "Potential impacts of climate change on extreme precipitation over four African coastal cities," Climatic Change, Springer, vol. 143(3), pages 399-413, August.
    5. Isaac Kwesi Nooni & Daniel Fiifi Tawia Hagan & Waheed Ullah & Jiao Lu & Shijie Li & Nana Agyemang Prempeh & Gnim Tchalim Gnitou & Kenny Thiam Choy Lim Kam Sian, 2022. "Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    6. Qiongfang Li & Tianshan Zeng & Qihui Chen & Xingye Han & Xi Weng & Pengfei He & Zhengmo Zhou & Yao Du, 2023. "Spatio-temporal changes in daily extreme precipitation for the Lancang–Mekong River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 641-672, January.
    7. Siatwiinda M. Siatwiinda & Iwan Supit & Bert van Hove & Olusegun Yerokun & Gerard H. Ros & Wim de Vries, 2021. "Climate change impacts on rainfed maize yields in Zambia under conventional and optimized crop management," Climatic Change, Springer, vol. 167(3), pages 1-23, August.
    8. Felicia O. Akinyemi & Babatunde J. Abiodun, 2019. "Potential impacts of global warming levels 1.5 °C and above on climate extremes in Botswana," Climatic Change, Springer, vol. 154(3), pages 387-400, June.
    9. Zoleka Ncoyini-Manciya & Michael J. Savage, 2022. "The Assessment of Future Air Temperature and Rainfall Changes Based on the Statistical Downscaling Model (SDSM): The Case of the Wartburg Community in KZN Midlands, South Africa," Sustainability, MDPI, vol. 14(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03530-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.