IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i3d10.1007_s10584-021-03109-w.html
   My bibliography  Save this article

Improving the usability of climate indicator visualizations through diagnostic design principles

Author

Listed:
  • Michael D. Gerst

    (University of Maryland)

  • Melissa A. Kenney

    (University of Maryland
    University of Minnesota)

  • Irina Feygina

    (Independent Behavioral Science Practitioner for Climate and Clean Energy)

Abstract

Visual climate indicators have become a popular way to communicate trends in important climate phenomena. Producing accessible visualizations for a general audience is challenging, especially when many are based on graphics designed for scientists, present complex and abstract concepts, and utilize suboptimal design choices. This study tests whether diagnostic visualization guidelines can be used to identify communication shortcomings for climate indicators and to specify effective design modifications. Design guidelines were used to diagnose problems in three hard-to-understand indicators, and to create three improved modifications per indicator. Using online surveys, the efficacy of the modifications was tested in a control versus treatment setup that measured the degree to which respondents understood, found accessible, liked, and trusted the graphics. Furthermore, we assessed whether respondents’ numeracy, climate attitudes, and political party affiliation affected the impact of design improvements. Results showed that simplifying modifications had a large positive effect on understanding, ease of understanding, and liking, but not trust. Better designs improved understanding similarly for people with different degrees of numerical capacity. Moreover, while climate skepticism was associated with less positive subjective responses and greater mistrust toward climate communication, design modification improved understanding equally for people across the climate attitude and ideological spectrum. These findings point to diagnostic design guidelines as a useful tool for creating more accessible, engaging climate graphics for the public.

Suggested Citation

  • Michael D. Gerst & Melissa A. Kenney & Irina Feygina, 2021. "Improving the usability of climate indicator visualizations through diagnostic design principles," Climatic Change, Springer, vol. 166(3), pages 1-22, June.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03109-w
    DOI: 10.1007/s10584-021-03109-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03109-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03109-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jordan Harold & Irene Lorenzoni & Thomas F. Shipley & Kenny R. Coventry, 2016. "Cognitive and psychological science insights to improve climate change data visualization," Nature Climate Change, Nature, vol. 6(12), pages 1080-1089, December.
    2. G. J. S. Hollin & W. Pearce, 2015. "Tension between scientific certainty and meaning complicates communication of IPCC reports," Nature Climate Change, Nature, vol. 5(8), pages 753-756, August.
    3. Melissa A. Kenney & Anthony C. Janetos & Glynis C. Lough, 2016. "Building an integrated U.S. National Climate Indicators System," Climatic Change, Springer, vol. 135(1), pages 85-96, March.
    4. Melissa Kenney & Anthony Janetos & Glynis Lough, 2016. "Building an integrated U.S. National Climate Indicators System," Climatic Change, Springer, vol. 135(1), pages 85-96, March.
    5. Rosemarie McMahon & Michael Stauffacher & Reto Knutti, 2015. "The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph," Climatic Change, Springer, vol. 133(2), pages 141-154, November.
    6. Dan M. Kahan & Hank Jenkins-Smith & Donald Braman, 2011. "Cultural cognition of scientific consensus," Journal of Risk Research, Taylor & Francis Journals, vol. 14(2), pages 147-174, February.
    7. Isaac M. Lipkus & Greg Samsa & Barbara K. Rimer, 2001. "General Performance on a Numeracy Scale among Highly Educated Samples," Medical Decision Making, , vol. 21(1), pages 37-44, February.
    8. David V. Budescu & Han-Hui Por & Stephen B. Broomell & Michael Smithson, 2014. "The interpretation of IPCC probabilistic statements around the world," Nature Climate Change, Nature, vol. 4(6), pages 508-512, June.
    9. Susanna Hornig Priest & Heinz Bonfadelli & Maria Rusanen, 2003. "The “Trust Gap” Hypothesis: Predicting Support for Biotechnology Across National Cultures as a Function of Trust in Actors," Risk Analysis, John Wiley & Sons, vol. 23(4), pages 751-766, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melissa A. Kenney & Anthony C. Janetos, 2020. "National indicators of climate changes, impacts, and vulnerability," Climatic Change, Springer, vol. 163(4), pages 1695-1704, December.
    2. Arjan Wardekker & Susanne Lorenz, 2019. "The visual framing of climate change impacts and adaptation in the IPCC assessment reports," Climatic Change, Springer, vol. 156(1), pages 273-292, September.
    3. Melissa A. Kenney & Anthony C. Janetos & Michael D. Gerst, 2020. "A framework for national climate indicators," Climatic Change, Springer, vol. 163(4), pages 1705-1718, December.
    4. Jordan Harold & Irene Lorenzoni & Thomas F. Shipley & Kenny R. Coventry, 2020. "Communication of IPCC visuals: IPCC authors’ views and assessments of visual complexity," Climatic Change, Springer, vol. 158(2), pages 255-270, January.
    5. Elisabeth M. Hamin & Yaser Abunnasr & Max Roman Dilthey & Pamela K. Judge & Melissa A. Kenney & Paul Kirshen & Thomas C. Sheahan & Don J. DeGroot & Robert L. Ryan & Brain G. McAdoo & Leonard Nurse & J, 2018. "Pathways to Coastal Resiliency: The Adaptive Gradients Framework," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    6. repec:cup:judgdm:v:16:y:2021:i:2:p:363-393 is not listed on IDEAS
    7. Jake F. Weltzin & Julio L. Betancourt & Benjamin I. Cook & Theresa M. Crimmins & Carolyn A. F. Enquist & Michael D. Gerst & John E. Gross & Geoffrey M. Henebry & Rebecca A. Hufft & Melissa A. Kenney &, 2020. "Seasonality of biological and physical systems as indicators of climatic variation and change," Climatic Change, Springer, vol. 163(4), pages 1755-1771, December.
    8. Miren Lorente & S. Gauthier & P. Bernier & C. Ste-Marie, 2020. "Tracking forest changes: Canadian Forest Service indicators of climate change," Climatic Change, Springer, vol. 163(4), pages 1839-1853, December.
    9. Ann Y. Liu & Juli M. Trtanj & Erin K. Lipp & John M. Balbus, 2021. "Toward an integrated system of climate change and human health indicators: a conceptual framework," Climatic Change, Springer, vol. 166(3), pages 1-16, June.
    10. Thomas J. Wilbanks & Rae Zimmerman & Susan Julius & Paul Kirshen & Joel B. Smith & Richard Moss & William Solecki & Matthias Ruth & Stephen Conrad & Steven J. Fernandez & Michael S. Matthews & Michael, 2020. "Toward indicators of the performance of US infrastructures under climate change risks," Climatic Change, Springer, vol. 163(4), pages 1795-1813, December.
    11. Sarah M. Anderson & Linda S. Heath & Marla R. Emery & Jeffrey A. Hicke & Jeremy S. Littell & Alan Lucier & Jeffrey G. Masek & David L. Peterson & Richard Pouyat & Kevin M. Potter & Guy Robertson & Jin, 2021. "Developing a set of indicators to identify, monitor, and track impacts and change in forests of the United States," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    12. Astrid Kause & Wändi Bruine de Bruin & Fai Fung & Andrea Taylor & Jason Lowe, 2020. "Visualizations of Projected Rainfall Change in the United Kingdom: An Interview Study about User Perceptions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    13. Joseph Daron & Susanne Lorenz & Andrea Taylor & Suraje Dessai, 2021. "Communicating future climate projections of precipitation change," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    14. Lori Bruhwiler & Sourish Basu & James H. Butler & Abhishek Chatterjee & Ed Dlugokencky & Melissa A. Kenney & Allison McComiskey & Stephen A. Montzka & Diane Stanitski, 2021. "Observations of greenhouse gases as climate indicators," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    15. Tomas Molina & Ernest Abadal, 2021. "The Evolution of Communicating the Uncertainty of Climate Change to Policymakers: A Study of IPCC Synthesis Reports," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    16. Kristie L. Ebi & Christopher Boyer & Kathryn J. Bowen & Howard Frumkin & Jeremy Hess, 2018. "Monitoring and Evaluation Indicators for Climate Change-Related Health Impacts, Risks, Adaptation, and Resilience," IJERPH, MDPI, vol. 15(9), pages 1-11, September.
    17. William Solecki & Cynthia Rosenzweig, 2020. "Indicators and monitoring systems for urban climate resiliency," Climatic Change, Springer, vol. 163(4), pages 1815-1837, December.
    18. Patricia M. Clay & Jennifer Howard & D. Shallin Busch & Lisa L. Colburn & Amber Himes-Cornell & Steven S. Rumrill & Stephani G. Zador & Roger B. Griffis, 2020. "Ocean and coastal indicators: understanding and coping with climate change at the land-sea interface," Climatic Change, Springer, vol. 163(4), pages 1773-1793, December.
    19. Marta Terrado & Luz Calvo & Isadora Christel, 2022. "Towards more effective visualisations in climate services: good practices and recommendations," Climatic Change, Springer, vol. 172(1), pages 1-26, May.
    20. David R. Mandel & Daniel Irwin, 2021. "Facilitating sender-receiver agreement in communicated probabilities: Is it best to use words, numbers or both?," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 16(2), pages 363-393, March.
    21. Katharine L. Jacobs & James L. Buizer & Susanne C. Moser, 2016. "The third US national climate assessment: innovations in science and engagement," Climatic Change, Springer, vol. 135(1), pages 1-7, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03109-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.