IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v9y2022i5d10.1007_s40745-022-00406-8.html
   My bibliography  Save this article

What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?

Author

Listed:
  • Petar Radanliev

    (University of Oxford)

  • David Roure

    (University of Oxford)

  • Rob Walton

    (University of Oxford)

  • Max Kleek

    (University of Oxford)

  • Omar Santos

    (Cisco Research Centre)

  • La’Treall Maddox

    (Cisco Research Centre)

Abstract

In this article, we conduct data mining and statistical analysis on the most effective countries, universities, and companies, based on their output (e.g., produced or collaborated) on COVID-19 during the first wave of the pandemic. Hence, the focus of this article is on the first wave of the pandemic. While in later stages of the pandemic, US and UK performed best in terms of vaccine production, the focus in this article is on the initial few months of the pandemic. The article presents findings from our analysing of all available records on COVID-19 from the Web of Science Core Collection. The results are compared with all available data records on pandemics and epidemics from 1900 to 2020. This has created interesting findings that are presented in the article with visualisation tools.

Suggested Citation

  • Petar Radanliev & David Roure & Rob Walton & Max Kleek & Omar Santos & La’Treall Maddox, 2022. "What Country, University, or Research Institute, Performed the Best on Covid-19 During the First Wave of the Pandemic?," Annals of Data Science, Springer, vol. 9(5), pages 1049-1067, October.
  • Handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00406-8
    DOI: 10.1007/s40745-022-00406-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00406-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00406-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    2. Gwo-Jen Hwang & Yun-Fang Tu, 2021. "Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
    3. Aman Khakharia & Vruddhi Shah & Sankalp Jain & Jash Shah & Amanshu Tiwari & Prathamesh Daphal & Mahesh Warang & Ninad Mehendale, 2021. "Outbreak Prediction of COVID-19 for Dense and Populated Countries Using Machine Learning," Annals of Data Science, Springer, vol. 8(1), pages 1-19, March.
    4. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reetika Sarkar & Sithija Manage & Xiaoli Gao, 2024. "Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations," Annals of Data Science, Springer, vol. 11(4), pages 1139-1164, August.
    2. WeiKang Liu & Yanchun Zhang & Hong Yang & Qinxue Meng, 2024. "A Survey on Differential Privacy for Medical Data Analysis," Annals of Data Science, Springer, vol. 11(2), pages 733-747, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamali, Seyedh Mahboobeh & Nader, Ale Ebrahim & Jamali, Fatemeh, 2021. "The Role of STEM Education in Improving the Quality of Education: A Bibliometric Study," MPRA Paper 114214, University Library of Munich, Germany, revised 02 May 2022.
    2. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    3. Elphas Okango & Henry Mwambi, 2022. "Dictionary Based Global Twitter Sentiment Analysis of Coronavirus (COVID-19) Effects and Response," Annals of Data Science, Springer, vol. 9(1), pages 175-186, February.
    4. Manan Shah & Ameya Kshirsagar & Tulasi Sushra, 2024. "Student Trend Analysis for Foreign Education Employing Machine Learning: A Case Study from ‘Disha Consultants’, Gujarat, India," Annals of Data Science, Springer, vol. 11(2), pages 571-588, April.
    5. Anurag Pathak & Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2022. "Statistical Inferences: Based on Exponentiated Exponential Model to Assess Novel Corona Virus (COVID-19) Kerala Patient Data," Annals of Data Science, Springer, vol. 9(1), pages 101-119, February.
    6. Muhammad Ahsan-ul-Haq & Mukhtar Ahmed & Javeria Zafar & Pedro Luiz Ramos, 2022. "Modeling of COVID-19 Cases in Pakistan Using Lifetime Probability Distributions," Annals of Data Science, Springer, vol. 9(1), pages 141-152, February.
    7. Zeng, Ying & Liu, Xinyi & Zhang, Xinyuan & Li, Zhiyong, 2024. "Retrospective of interdisciplinary research on robot services (1954–2023): From parasitism to symbiosis," Technology in Society, Elsevier, vol. 78(C).
    8. Ada P. Smith & Sechindra Vallury & Elizabeth Covelli Metcalf, 2023. "Social dimensions of adaptation to climate change in rangelands: a systematic literature review," Climatic Change, Springer, vol. 176(12), pages 1-24, December.
    9. Govinda Prasad Dhungana & Arun Kumar Chaudhary & Ramesh Prasad Tharu & Vijay Kumar, 2025. "Generalized Alpha Power Inverted Weibull Distribution: Application of Air Pollution in Kathmandu, Nepal," Annals of Data Science, Springer, vol. 12(5), pages 1691-1715, October.
    10. Merve Anaç & Gulden Gumusburun Ayalp & Kamil Erdayandi, 2023. "Prefabricated Construction Risks: A Holistic Exploration through Advanced Bibliometric Tool and Content Analysis," Sustainability, MDPI, vol. 15(15), pages 1-31, August.
    11. Quan-Hoang Vuong & Huyen Thanh T. Nguyen & Thanh-Hang Pham & Manh-Toan Ho & Minh-Hoang Nguyen, 2021. "Assessing the ideological homogeneity in entrepreneurial finance research by highly cited publications," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    12. Khayet, Mohamed & Aytaç, Ersin & Essalhi, Mohamed & Cipollina, Andrea & García-Fernández, Loreto & Contreras-Martínez, Jorge & García-Payo, Carmen & Ruiz-García, Alejandro & Figoli, Alberto, 2025. "Elucidating the dynamics of salinity gradient energy research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    13. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    14. Maksym Obrizan, 2018. "Economists in Ukraine: who are they and where do they publish?," Working Papers 3181, Research Consulting and Development.
    15. Hongxia Jin & Lu Lu & Haojun Fan, 2022. "Global Trends and Research Hotspots in Long COVID: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(6), pages 1-14, March.
    16. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    17. Charlie Karlsson & Björn Hammarfelt, 2025. "Correction: The growth and development of Nordic regional science research 1982–2022: bibliometric evidence from thirteen regional science journals," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 74(2), pages 1-1, June.
    18. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    19. Zoltán Lakner & Brigitta Plasek & Gyula Kasza & Anna Kiss & Sándor Soós & Ágoston Temesi, 2021. "Towards Understanding the Food Consumer Behavior–Food Safety–Sustainability Triangle: A Bibliometric Approach," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    20. Ying Liang & Wei Song, 2022. "Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review," Land, MDPI, vol. 11(12), pages 1-23, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:9:y:2022:i:5:d:10.1007_s40745-022-00406-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.