IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v12y2025i2d10.1007_s40745-024-00520-9.html
   My bibliography  Save this article

Optimal Strategy for Elevated Estimation of Population Mean in Stratified Random Sampling under Linear Cost Function

Author

Listed:
  • Subhash Kumar Yadav

    (Babasaheb Bhimrao Ambedkar University)

  • Mukesh Kumar Verma

    (Babasaheb Bhimrao Ambedkar University)

  • Rahul Varshney

    (Babasaheb Bhimrao Ambedkar University)

Abstract

In this paper, we propose the exponential ratio-type estimator for the elevated estimation of population mean, implying one auxiliary variable in stratified random sampling using the conventional ratio and, Bahl and Tuteja exponential ratio-type estimators. The bias and the Mean Squared Error (MSE) of the proposed estimator are derived up to a first-order approximation and compared with existing estimators. Theoretically, we also compare MSE of the proposed estimator using the linear cost function with the competing estimators. The optimal values of the characterizing scalars are obtained and for these optimal values of characterizing scalars, the minimum MSE is obtained. We find theoretically that the proposed estimator is more efficient than other estimators under restricted conditions by formulating the proposed problem as an optimization problem under linear cost function. The numerical illustration is also included to verify theoretical findings for their practical utility. The estimator with least MSE is recommended for practical utility in different areas of applications of stratified random sampling.

Suggested Citation

  • Subhash Kumar Yadav & Mukesh Kumar Verma & Rahul Varshney, 2025. "Optimal Strategy for Elevated Estimation of Population Mean in Stratified Random Sampling under Linear Cost Function," Annals of Data Science, Springer, vol. 12(2), pages 517-538, April.
  • Handle: RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00520-9
    DOI: 10.1007/s40745-024-00520-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-024-00520-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-024-00520-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    2. Housila P. Singh & Gajendra K. Vishwakarma, 2010. "A general procedure for estimating the population mean in stratified sampling using auxiliary information," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 47-65.
    3. Ramkrishna Solanki & Housila Singh, 2015. "Efficient classes of estimators in stratified random sampling," Statistical Papers, Springer, vol. 56(1), pages 83-103, February.
    4. Nursel Koyuncu & Cem Kadilar, 2010. "On improvement in estimating population mean in stratified random sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(6), pages 999-1013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shashi Bhushan & Anoop Kumar & Usman Shahzad & Amer Ibrahim Al-Omari & Ibrahim Mufrah Almanjahie, 2022. "On Some Improved Class of Estimators by Using Stratified Ranked Set Sampling," Mathematics, MDPI, vol. 10(18), pages 1-32, September.
    2. Housila Singh & Ramkrishna Solanki, 2013. "A new procedure for variance estimation in simple random sampling using auxiliary information," Statistical Papers, Springer, vol. 54(2), pages 479-497, May.
    3. Lakshmi N. Upadhyaya & Rohini Yadav & Housila P. Singh & S. Chatterjee, 2011. "Improved separate ratio exponential estimator for population mean using auxiliary information," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 12(2), pages 401-412, October.
    4. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    5. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    6. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    7. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    8. Satti R. G. Reddy & G. P. Saradhi Varma & Rajya Lakshmi Davuluri, 2024. "Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision," Annals of Data Science, Springer, vol. 11(1), pages 243-272, February.
    9. Astha Modi & Khelan Shah & Shrey Shah & Samir Patel & Manan Shah, 2024. "Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis," Annals of Data Science, Springer, vol. 11(1), pages 159-180, February.
    10. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    11. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    12. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    13. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    14. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    15. Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
    16. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    17. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    18. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    19. Sankalp Loomba & Madhavi Dave & Harshal Arolkar & Sachin Sharma, 2024. "Sentiment Analysis using Dictionary-Based Lexicon Approach: Analysis on the Opinion of Indian Community for the Topic of Cryptocurrency," Annals of Data Science, Springer, vol. 11(6), pages 2019-2034, December.
    20. Desmond Chekwube Bartholomew & Chrysogonus Chinagorom Nwaigwe & Ukamaka Cynthia Orumie & Godwin Onyeka Nwafor, 2024. "Intervention Analysis of COVID-19 Vaccination in Nigeria: The Naive Solution Versus Interrupted Time Series," Annals of Data Science, Springer, vol. 11(5), pages 1609-1634, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:12:y:2025:i:2:d:10.1007_s40745-024-00520-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.