IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i1d10.1007_s40745-022-00451-3.html
   My bibliography  Save this article

A Novel G Family for Single Acceptance Sampling Plan with Application in Quality and Risk Decisions

Author

Listed:
  • Basma Ahmed

    (Higher Institute for Specific Studies)

  • M. Masoom Ali

    (Ball State University)

  • Haitham M. Yousof

    (Benha University)

Abstract

In this paper we present a new G family of probability distributions. Some of its mathematical properties are derived. Based on a special member of the new family, a single acceptance sampling plan is considered. The issue of a single sample plan when the lifetime test is truncated at a pre-determined period is discussed. For certain different acceptance levels, confidence limits and values ratio of time and the sample size is desired to assure the estimated fixed mean life. The results of lowest ratio of actual mean life to fixed mean life that confirms acceptance with a given probability are presented. A case study is presented for this purpose.

Suggested Citation

  • Basma Ahmed & M. Masoom Ali & Haitham M. Yousof, 2024. "A Novel G Family for Single Acceptance Sampling Plan with Application in Quality and Risk Decisions," Annals of Data Science, Springer, vol. 11(1), pages 181-199, February.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00451-3
    DOI: 10.1007/s40745-022-00451-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-022-00451-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-022-00451-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmoud M. Mansour & Mohamed Ibrahim & Khaoula Aidi & Nadeem Shafique Butt & Mir Masoom Ali & Haitham M. Yousof & Mohamed S. Hamed, 2020. "A New Log-Logistic Lifetime Model with Mathematical Properties, Copula, Modified Goodness-of-Fit Test for Validation and Real Data Modeling," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    2. Faton Merovci & Morad Alizadeh & Haitham M. Yousof & G. G. Hamedani, 2017. "The exponentiated transmuted-G family of distributions: Theory and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(21), pages 10800-10822, November.
    3. Muhammad Aslam & Debasis Kundu & Munir Ahmad, 2010. "Time truncated acceptance sampling plans for generalized exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(4), pages 555-566.
    4. Haitham M. Yousof & Mustafa Ç. Korkmaz & Subhradev Sen, 2021. "A New Two-Parameter Lifetime Model," Annals of Data Science, Springer, vol. 8(1), pages 91-106, March.
    5. Yousof Haitham M. & Masoom Ali M. & Goual Hafida & Ibrahim Mohamed, 2021. "A new reciprocal Rayleigh extension: properties, copulas, different methods of estimation and a modified right-censored test for validation," Statistics in Transition New Series, Statistics Poland, vol. 22(3), pages 99-121, September.
    6. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    7. Mahdi Rasekhi & Mohammad Mehdi Saber & Haitham M. Yousof, 2020. "Bayesian and classical inference of reliability in multicomponent stress-strength under the generalized logistic model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(21), pages 5114-5125, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    2. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    3. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    4. Mahendra Saha & Harsh Tripathi & Anju Devi & Pratibha Pareek, 2024. "Applications of Reliability Test Plan for Logistic Rayleigh Distributed Quality Characteristic," Annals of Data Science, Springer, vol. 11(5), pages 1687-1703, October.
    5. Majid Hashempour & Morad Alizadeh & Haitham M. Yousof, 2024. "A New Lindley Extension: Estimation, Risk Assessment and Analysis Under Bimodal Right Skewed Precipitation Data," Annals of Data Science, Springer, vol. 11(6), pages 1919-1958, December.
    6. Yousof Haitham M. & Masoom Ali M. & Goual Hafida & Ibrahim Mohamed, 2021. "A new reciprocal Rayleigh extension: properties, copulas, different methods of estimation and a modified right-censored test for validation," Statistics in Transition New Series, Statistics Poland, vol. 22(3), pages 99-121, September.
    7. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    8. Mansoureh Beheshti Nejad & Seyed Mahmoud Zanjirchi & Seyed Mojtaba Hosseini Bamakan & Negar Jalilian, 2024. "Blockchain Adoption in Operations Management: A Systematic Literature Review of 14 Years of Research," Annals of Data Science, Springer, vol. 11(4), pages 1361-1389, August.
    9. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    10. Satti R. G. Reddy & G. P. Saradhi Varma & Rajya Lakshmi Davuluri, 2024. "Deep Neural Network (DNN) Mechanism for Identification of Diseased and Healthy Plant Leaf Images Using Computer Vision," Annals of Data Science, Springer, vol. 11(1), pages 243-272, February.
    11. Astha Modi & Khelan Shah & Shrey Shah & Samir Patel & Manan Shah, 2024. "Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis," Annals of Data Science, Springer, vol. 11(1), pages 159-180, February.
    12. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    13. Rana Muhammad Usman & Muhammad Ahsan ul Haq, 2019. "Some Remarks on Odd Burr III Weibull Distribution," Annals of Data Science, Springer, vol. 6(1), pages 21-38, March.
    14. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    15. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    16. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    17. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    18. Elham Shamsinejad & Touraj Banirostam & Mir Mohsen Pedram & Amir Masoud Rahmani, 2025. "A Review of Anonymization Algorithms and Methods in Big Data," Annals of Data Science, Springer, vol. 12(1), pages 253-279, February.
    19. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    20. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:1:d:10.1007_s40745-022-00451-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.