IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i6d10.1007_s40745-021-00366-5.html
   My bibliography  Save this article

Feature Selection in Imbalanced Data

Author

Listed:
  • Firuz Kamalov

    (Canadian University of Dubai)

  • Fadi Thabtah

    (Manukau Institute of Technology)

  • Ho Hon Leung

    (UAE University)

Abstract

The traditional feature selection methods are not suitable for imbalanced data as they tend to be biased towards the majority class. This problem is particularly acute in the field of medical diagnostics and fraud detection where the class distribution is highly skewed. In this paper, we propose a novel filter approach using decision tree-based $$F_1$$ F 1 -score. The $$F_1$$ F 1 -score incorporates the accuracy with respect to the minority class data and hence is a good measure in the case of imbalanced data. In the proposed implementation, the $$F_1$$ F 1 -score is calculated based on a 1-dimensional decision tree classifier resulting in a fast and effective feature evaluation method. Numerical experiments confirm that the proposed method achieves robust dimensionality reduction and accuracy results. In addition, the low computational complexity of the algorithm makes it a practical choice for big data applications.

Suggested Citation

  • Firuz Kamalov & Fadi Thabtah & Ho Hon Leung, 2023. "Feature Selection in Imbalanced Data," Annals of Data Science, Springer, vol. 10(6), pages 1527-1541, December.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:6:d:10.1007_s40745-021-00366-5
    DOI: 10.1007/s40745-021-00366-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00366-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00366-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Firuz Kamalov & Fadi Thabtah, 2017. "A Feature Selection Method Based on Ranked Vector Scores of Features for Classification," Annals of Data Science, Springer, vol. 4(4), pages 483-502, December.
    2. Abdul Majeed, 2019. "Improving Time Complexity and Accuracy of the Machine Learning Algorithms Through Selection of Highly Weighted Top k Features from Complex Datasets," Annals of Data Science, Springer, vol. 6(4), pages 599-621, December.
    3. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    4. Fadi Thabtah & Firuz Kamalov, 2017. "Phishing Detection: A Case Analysis on Classifiers with Rules Using Machine Learning," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    2. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    3. Nikhil J. Rathod & Manoj K. Chopra & Prem Kumar Chaurasiya & Umesh S. Vidhate & Abhishek Dasore, 2023. "Optimization on the Turning Process Parameters of SS 304 Using Taguchi and TOPSIS," Annals of Data Science, Springer, vol. 10(5), pages 1405-1419, October.
    4. Firuz Kamalov & Ho Hon Leung & Sherif Moussa, 2022. "Monotonicity of the $$\chi ^2$$ χ 2 -statistic and Feature Selection," Annals of Data Science, Springer, vol. 9(6), pages 1223-1241, December.
    5. Majed Rajab, 2019. "Visualisation Model Based on Phishing Features," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-17, March.
    6. Mohamed Ibrahim & Khaoula Aidi & M. Masoom Ali & Haitham M. Yousof, 2023. "A Novel Test Statistic for Right Censored Validity under a new Chen extension with Applications in Reliability and Medicine," Annals of Data Science, Springer, vol. 10(5), pages 1285-1299, October.
    7. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    8. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    9. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    10. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    11. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    12. Shah Hussain & Muhammad Qasim Khan, 2023. "Student-Performulator: Predicting Students’ Academic Performance at Secondary and Intermediate Level Using Machine Learning," Annals of Data Science, Springer, vol. 10(3), pages 637-655, June.
    13. A. R. Sherwani & Q. M. Ali, 2023. "Parametric Classification using Fuzzy Approach for Handling the Problem of Mixed Pixels in Ground Truth Data for a Satellite Image," Annals of Data Science, Springer, vol. 10(6), pages 1459-1472, December.
    14. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    15. Rakhal Das & Anjan Mukherjee & Binod Chandra Tripathy, 2022. "Application of Neutrosophic Similarity Measures in Covid-19," Annals of Data Science, Springer, vol. 9(1), pages 55-70, February.
    16. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    17. Siying Guo & Jianxuan Liu & Qiu Wang, 2022. "Effective Learning During COVID-19: Multilevel Covariates Matching and Propensity Score Matching," Annals of Data Science, Springer, vol. 9(5), pages 967-982, October.
    18. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    19. Varun Agiwal, 2023. "Bayesian Estimation of Stress Strength Reliability from Inverse Chen Distribution with Application on Failure Time Data," Annals of Data Science, Springer, vol. 10(2), pages 317-347, April.
    20. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:6:d:10.1007_s40745-021-00366-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.