IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v96y2000i1p191-20810.1023-a1018951502447.html
   My bibliography  Save this article

Planar Weber location problems with barriers and block norms

Author

Listed:
  • Horst Hamacher
  • Kathrin Klamroth

Abstract

The Weber problem for a given finite set of existing facilities Ex={Ex 1 ,Ex 2 ,...,Ex M }⊂∝ 2 with positive weights w m (m=1,...,M) is to find a new facility X * ∈∝ 2 such that Σ m=1 M w m d(X,Ex m ) is minimized for some distance function d. In this paper we consider distances defined by block norms. A variation of this problem is obtained if barriers are introduced which are convex polyhedral subsets of the plane where neither location of new facilities nor traveling is allowed. Such barriers, like lakes, military regions, national parks or mountains, are frequently encountered in practice. From a mathematical point of view barrier problems are difficult, since the presence of barriers destroys the convexity of the objective function. Nevertheless, this paper establishes a discretization result: one of the grid points in the grid defined by the existing facilities and the fundamental directions of the polyhedral distances can be proved to be an optimal location. Thus the barrier problem can be solved with a polynomial algorithm. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • Horst Hamacher & Kathrin Klamroth, 2000. "Planar Weber location problems with barriers and block norms," Annals of Operations Research, Springer, vol. 96(1), pages 191-208, November.
  • Handle: RePEc:spr:annopr:v:96:y:2000:i:1:p:191-208:10.1023/a:1018951502447
    DOI: 10.1023/A:1018951502447
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018951502447
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018951502447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark-Christoph Körner & Anita Schöbel, 2010. "Weber problems with high-speed lines," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 223-241, July.
    2. P. Dearing & K. Klamroth & R. Segars, 2005. "Planar Location Problems with Block Distance and Barriers," Annals of Operations Research, Springer, vol. 136(1), pages 117-143, April.
    3. Amiri-Aref, Mehdi & Farahani, Reza Zanjirani & Hewitt, Mike & Klibi, Walid, 2019. "Equitable location of facilities in a region with probabilistic barriers to travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 66-85.
    4. J. Brimberg & S. Salhi, 2005. "A Continuous Location-Allocation Problem with Zone-Dependent Fixed Cost," Annals of Operations Research, Springer, vol. 136(1), pages 99-115, April.
    5. Canbolat, Mustafa S. & Wesolowsky, George O., 2010. "The rectilinear distance Weber problem in the presence of a probabilistic line barrier," European Journal of Operational Research, Elsevier, vol. 202(1), pages 114-121, April.
    6. P.M. Dearing & H.W. Hamacher & K. Klamroth, 2002. "Dominating sets for rectilinear center location problems with polyhedral barriers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(7), pages 647-665, October.
    7. Masashi Miyagawa, 2012. "Rectilinear distance to a facility in the presence of a square barrier," Annals of Operations Research, Springer, vol. 196(1), pages 443-458, July.
    8. Haluk Eliş, 2017. "A finite dominating set of cardinality O(k) and a witness set of cardinality O(n) for 1.5D terrain guarding problem," Annals of Operations Research, Springer, vol. 254(1), pages 37-46, July.
    9. Murat Oğuz & Tolga Bektaş & Julia A Bennell & Jörg Fliege, 2016. "A modelling framework for solving restricted planar location problems using phi-objects," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(8), pages 1080-1096, August.
    10. Masashi Miyagawa, 2017. "Continuous location model of a rectangular barrier facility," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 95-110, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:96:y:2000:i:1:p:191-208:10.1023/a:1018951502447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.