IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i2d10.1007_s10479-022-04849-3.html
   My bibliography  Save this article

A novel framework of credit risk feature selection for SMEs during industry 4.0

Author

Listed:
  • Yang Lu

    (Northwest A & F University
    Northwest A & F University)

  • Lian Yang

    (Northwest A & F University
    Northwest A & F University)

  • Baofeng Shi

    (Northwest A & F University
    Northwest A & F University)

  • Jiaxiang Li

    (Northwest A & F University
    Northwest A & F University)

  • Mohammad Zoynul Abedin

    (Teesside University International Business School, Teesside University)

Abstract

With the development of industry 4.0, the credit data of SMEs are characterized by a large volume, high speed, diversity and low-value density. How to select the key features that affect the credit risk from the high-dimensional data has become the critical point to accurately measure the credit risk of SMEs and alleviate their financing constraints. In doing so, this paper proposes a credit risk feature selection approach that integrates the binary opposite whale optimization algorithm (BOWOA) and the Kolmogorov–Smirnov (KS) statistic. Furthermore, we use seven machine learning classifiers and three discriminant methods to verify the robustness of the proposed model by using three actual bank data from SMEs. The empirical results show that although no one artificial intelligence credit evaluation method is universal for different SMEs’ credit data, the performance of the BOWOA-KS model proposed in this paper is better than other methods if the number of indicators in the optimal subset of indicators and the prediction performance of the classifier are considered simultaneously. By providing a high-dimensional data feature selection method and improving the predictive performance of credit risk, it could help SMEs focus on the factors that will allow them to improve their creditworthiness and more easily access loans from financial institutions. Moreover, it will also help government agencies and policymakers develop policies to help SMEs reduce their credit risks.

Suggested Citation

  • Yang Lu & Lian Yang & Baofeng Shi & Jiaxiang Li & Mohammad Zoynul Abedin, 2025. "A novel framework of credit risk feature selection for SMEs during industry 4.0," Annals of Operations Research, Springer, vol. 350(2), pages 425-452, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:2:d:10.1007_s10479-022-04849-3
    DOI: 10.1007/s10479-022-04849-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04849-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04849-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:2:d:10.1007_s10479-022-04849-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.