IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v107y2023i4d10.1007_s10182-022-00468-2.html
   My bibliography  Save this article

Addressing non-normality in multivariate analysis using the t-distribution

Author

Listed:
  • Felipe Osorio

    (Universidad Técnica Federico Santa María)

  • Manuel Galea

    (Pontificia Universidad Católica de Chile)

  • Claudio Henríquez

    (Pontificia Universidad Católica de Chile)

  • Reinaldo Arellano-Valle

    (Pontificia Universidad Católica de Chile)

Abstract

The main aim of this paper is to propose a set of tools for assessing non-normality taking into consideration the class of multivariate t-distributions. Assuming second moment existence, we consider a reparameterized version of the usual t distribution, so that the scale matrix coincides with covariance matrix of the distribution. We use the local influence procedure and the Kullback–Leibler divergence measure to propose quantitative methods to evaluate deviations from the normality assumption. In addition, the possible non-normality due to the presence of both skewness and heavy tails is also explored. Our findings based on two real datasets are complemented by a simulation study to evaluate the performance of the proposed methodology on finite samples.

Suggested Citation

  • Felipe Osorio & Manuel Galea & Claudio Henríquez & Reinaldo Arellano-Valle, 2023. "Addressing non-normality in multivariate analysis using the t-distribution," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(4), pages 785-813, December.
  • Handle: RePEc:spr:alstar:v:107:y:2023:i:4:d:10.1007_s10182-022-00468-2
    DOI: 10.1007/s10182-022-00468-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00468-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00468-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Bodnar, Taras & Gupta, Arjun K. & Parolya, Nestor, 2014. "On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 215-228.
    3. Sutradhar, B. C., 1993. "Score Test for the Covariance Matrix of the Elliptic t-Distribution," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 1-12, July.
    4. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    5. Hong‐Tu Zhu & Sik‐Yum Lee, 2001. "Local influence for incomplete data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 111-126.
    6. Manuel Galea & David Cademartori & Roberto Curci & Alonso Molina, 2020. "Robust Inference in the Capital Asset Pricing Model Using the Multivariate t -distribution," JRFM, MDPI, vol. 13(6), pages 1-22, June.
    7. W.‐Y. Poon & Y. S. Poon, 1999. "Conformal normal curvature and assessment of local influence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 51-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandra Tapia & Victor Leiva & Maria del Pilar Diaz & Viviana Giampaoli, 2019. "Influence diagnostics in mixed effects logistic regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 920-942, September.
    2. Russo, Cibele M. & Paula, Gilberto A. & Aoki, Reiko, 2009. "Influence diagnostics in nonlinear mixed-effects elliptical models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4143-4156, October.
    3. Xiaowen Dai & Libin Jin & Maozai Tian & Lei Shi, 2019. "Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity," Statistical Papers, Springer, vol. 60(5), pages 1423-1446, October.
    4. Xiaowen Dai & Libin Jin & Lei Shi & Cuiping Yang & Shuangzhe Liu, 2016. "Local influence analysis in general spatial models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 313-331, July.
    5. R.A.B. Assumpção & M.A. Uribe-Opazo & M. Galea, 2014. "Analysis of local influence in geostatistics using Student's t -distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2323-2341, November.
    6. Lee, Sik-Yum & Lu, Bin & Song, Xin-Yuan, 2006. "Assessing local influence for nonlinear structural equation models with ignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 50(5), pages 1356-1377, March.
    7. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    8. Issouani, El Mehdi & Bertail, Patrice & Gautherat, Emmanuelle, 2024. "Exponential bounds for regularized Hotelling’s T2 statistic in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    9. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    10. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    11. Shi, Lei & Lu, Jun & Zhao, Jianhua & Chen, Gemai, 2016. "Case deletion diagnostics for GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 176-191.
    12. Jun Lu & Wen Gan & Lei Shi, 2022. "Local influence analysis for GMM estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 1-23, March.
    13. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    14. Taras Bodnar & Nestor Parolya & Erik Thors'en, 2022. "Two is better than one: Regularized shrinkage of large minimum variance portfolio," Papers 2202.06666, arXiv.org.
    15. Manuel Galea & Patricia Giménez, 2019. "Local influence diagnostics for the test of mean–variance efficiency and systematic risks in the capital asset pricing model," Statistical Papers, Springer, vol. 60(1), pages 293-312, February.
    16. Vasconcellos, Klaus L.P. & Zea Fernandez, L.M., 2009. "Influence analysis with homogeneous linear restrictions," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3787-3794, September.
    17. Liebscher, Eckhard & Okhrin, Ostap, 2023. "Semiparametric estimation of the high-dimensional elliptical distribution," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    18. Zeller, Camila B. & Labra, Filidor V. & Lachos, Victor H. & Balakrishnan, N., 2010. "Influence analyses of skew-normal/independent linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1266-1280, May.
    19. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2009. "On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1249-1263, February.
    20. Patricia Giménez & María Patat, 2014. "Local influence for functional comparative calibration models with replicated data," Statistical Papers, Springer, vol. 55(2), pages 431-454, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:107:y:2023:i:4:d:10.1007_s10182-022-00468-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.