IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v105y2021i3d10.1007_s10182-021-00399-4.html
   My bibliography  Save this article

Optimal designs for homoscedastic functional polynomial measurement error models

Author

Listed:
  • Min-Jue Zhang

    (Shanghai Normal University
    Chizhou University)

  • Rong-Xian Yue

    (Shanghai Normal University)

Abstract

This paper considers the construction of optimal designs for homoscedastic functional polynomial measurement error models. The general equivalence theorems are given to check the optimality of a given design, based on the locally and Bayesian D-optimality criteria. The explicit characterizations of the locally and Bayesian D-optimal designs are provided. The results are illustrated by numerical analysis for a quadratic polynomial measurement error model. Numerical results show that the error-variances ratio and the model parameter are the important factors for the both optimal designs. Moreover, it is shown that the Bayesian D-optimal design is more robust and effective compared with the locally D-optimal design, if the error-variances ratio or the model parameter is misspecified.

Suggested Citation

  • Min-Jue Zhang & Rong-Xian Yue, 2021. "Optimal designs for homoscedastic functional polynomial measurement error models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 485-501, September.
  • Handle: RePEc:spr:alstar:v:105:y:2021:i:3:d:10.1007_s10182-021-00399-4
    DOI: 10.1007/s10182-021-00399-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-021-00399-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-021-00399-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maria Konstantinou & Holger Dette, 2017. "Bayesian D‐optimal designs for error‐in‐variables models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(3), pages 269-281, May.
    2. M. Konstantinou & H. Dette, 2015. "Locally optimal designs for errors-in-variables models," Biometrika, Biometrika Trust, vol. 102(4), pages 951-958.
    3. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    4. Dette, Holger & Bretz, Frank & Pepelyshev, Andrey & Pinheiro, José, 2008. "Optimal Designs for Dose-Finding Studies," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1225-1237.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiens, Douglas P., 2021. "Robust designs for dose–response studies: Model and labelling robustness," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    2. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    4. Dette, Holger & Holland-Letz, Tim, 2008. "A geometric characterization of c-optimal designs for heteroscedastic regression," Technical Reports 2008,26, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    5. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    6. Holger Dette & Laura Hoyden & Sonja Kuhnt & Kirsten Schorning, 2017. "Optimal designs for thermal spraying," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 53-72, January.
    7. McGree, J.M., 2017. "Developments of the total entropy utility function for the dual purpose of model discrimination and parameter estimation in Bayesian design," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 207-225.
    8. Bornkamp, Björn & Pinheiro, José & Bretz, Frank, 2009. "MCPMod: An R Package for the Design and Analysis of Dose-Finding Studies," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i07).
    9. Amir Ali Nasrollahzadeh & Amin Khademi, 2022. "Dynamic Programming for Response-Adaptive Dose-Finding Clinical Trials," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1176-1190, March.
    10. Idais, Osama, 2020. "A note on locally optimal designs for generalized linear models with restricted support," Statistics & Probability Letters, Elsevier, vol. 159(C).
    11. repec:jss:jstsof:29:i07 is not listed on IDEAS
    12. Jiajing Xu & Guosheng Yin & David Ohlssen & Frank Bretz, 2016. "Bayesian two-stage dose finding for cytostatic agents via model adaptation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 465-482, April.
    13. Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Peter F. Thall & Hoang Q. Nguyen & Sarah Zohar & Pierre Maton, 2014. "Optimizing Sedative Dose in Preterm Infants Undergoing Treatment for Respiratory Distress Syndrome," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 931-943, September.
    15. Karunamuni, Rohana J. & Tang, Qingguo & Zhao, Bangxin, 2015. "Robust and efficient estimation of effective dose," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 47-60.
    16. Eric Gibson & Frank Bretz & Michael Looby & Bjoern Bornkamp, 2018. "Key Aspects of Modern, Quantitative Drug Development," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(2), pages 283-296, August.
    17. Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Bretz, Frank & Dette, Holger & Pinheiro, José, 2008. "Practical considerations for optimal designs in clinical dose finding studies," Technical Reports 2008,22, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:105:y:2021:i:3:d:10.1007_s10182-021-00399-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.