IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v76y2024i3d10.1007_s10463-024-00898-6.html
   My bibliography  Save this article

On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent

Author

Listed:
  • Selina Drews

    (Technische Universität Darmstadt)

  • Michael Kohler

    (Technische Universität Darmstadt)

Abstract

Estimation of a multivariate regression function from independent and identically distributed data is considered. An estimate is defined which fits a deep neural network consisting of a large number of fully connected neural networks, which are computed in parallel, via gradient descent to the data. The estimate is over-parametrized in the sense that the number of its parameters is much larger than the sample size. It is shown that with a suitable random initialization of the network, a sufficiently small gradient descent step size, and a number of gradient descent steps that slightly exceed the reciprocal of this step size, the estimate is universally consistent. This means that the expected $$L_2$$ L 2 error converges to zero for all distributions of the data where the response variable is square integrable.

Suggested Citation

  • Selina Drews & Michael Kohler, 2024. "On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(3), pages 361-391, June.
  • Handle: RePEc:spr:aistmt:v:76:y:2024:i:3:d:10.1007_s10463-024-00898-6
    DOI: 10.1007/s10463-024-00898-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00898-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00898-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langer, Sophie, 2021. "Analysis of the rate of convergence of fully connected deep neural network regression estimates with smooth activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    2. Langer, Sophie, 2021. "Approximating smooth functions by deep neural networks with sigmoid activation function," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belomestny, Denis & Goldman, Artur & Naumov, Alexey & Samsonov, Sergey, 2024. "Theoretical guarantees for neural control variates in MCMC," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 382-405.
    2. Nifei Lin & Yingda Song & L. Jeff Hong, 2024. "Efficient Nested Estimation of CoVaR: A Decoupled Approach," Papers 2411.01319, arXiv.org.
    3. Francesca Mandel & Riddhi Pratim Ghosh & Ian Barnett, 2023. "Neural networks for clustered and longitudinal data using mixed effects models," Biometrics, The International Biometric Society, vol. 79(2), pages 711-721, June.
    4. repec:osf:socarx:qzm5v_v1 is not listed on IDEAS
    5. Soham Sarkar & Victor M. Panaretos, 2022. "CovNet: Covariance networks for functional data on multidimensional domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1785-1820, November.
    6. Li Li & Jiahui Yu & Hang Cheng & Miaojuan Peng, 2021. "A Smart Helmet-Based PLS-BPNN Error Compensation Model for Infrared Body Temperature Measurement of Construction Workers during COVID-19," Mathematics, MDPI, vol. 9(21), pages 1-20, November.
    7. Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
    8. Kwangho Ko & Tongwon Lee & Seunghyun Jeong, 2021. "A Deep Learning Method for Monitoring Vehicle Energy Consumption with GPS Data," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    9. Kathrin Glau & Linus Wunderlich, 2024. "Neural network expression rates and applications of the deep parametric PDE method in counterparty credit risk," Annals of Operations Research, Springer, vol. 336(1), pages 331-357, May.
    10. Erhan Bayraktar & Bingyan Han, 2023. "Fitted Value Iteration Methods for Bicausal Optimal Transport," Papers 2306.12658, arXiv.org, revised Nov 2023.
    11. Leogrande, Angelo, 2024. "From Discounts to Delivery: Decoding Customer Care Interactions in Warehousing," SocArXiv qzm5v, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:76:y:2024:i:3:d:10.1007_s10463-024-00898-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.