IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v75y2023i6d10.1007_s10463-023-00869-3.html
   My bibliography  Save this article

A goodness-of-fit test on the number of biclusters in a relational data matrix

Author

Listed:
  • Chihiro Watanabe

    (The University of Tokyo)

  • Taiji Suzuki

    (The University of Tokyo
    RIKEN)

Abstract

Biclustering is a method for detecting homogeneous submatrices in a given matrix. Although there are many studies that estimate the underlying bicluster structure of a matrix, few have enabled us to determine the appropriate number of biclusters. Recently, a statistical test on the number of biclusters has been proposed for a regular-grid bicluster structure. However, when the latent bicluster structure does not satisfy such regular-grid assumption, the previous test requires a larger number of biclusters than necessary for the null hypothesis to be accepted, which is not desirable in terms of interpreting the accepted structure. In this study, we propose a new statistical test on the number of biclusters that does not require the regular-grid assumption and derive the asymptotic behavior of the proposed test statistic in both null and alternative cases. We illustrate the effectiveness of the proposed method by applying it to both synthetic and practical data matrices.

Suggested Citation

  • Chihiro Watanabe & Taiji Suzuki, 2023. "A goodness-of-fit test on the number of biclusters in a relational data matrix," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(6), pages 979-1009, December.
  • Handle: RePEc:spr:aistmt:v:75:y:2023:i:6:d:10.1007_s10463-023-00869-3
    DOI: 10.1007/s10463-023-00869-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-023-00869-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-023-00869-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Bickel & Purnamrita Sarkar, 2016. "Hypothesis testing for automated community detection in networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 253-273, January.
    2. Thierry Chekouo & Alejandro Murua, 2015. "The penalized biclustering model and related algorithms," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1255-1277, June.
    3. Wyse, Jason & Friel, Nial & Latouche, Pierre, 2017. "Inferring structure in bipartite networks using the latent blockmodel and exact ICL," Network Science, Cambridge University Press, vol. 5(1), pages 45-69, March.
    4. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    5. Ali Oghabian & Sami Kilpinen & Sampsa Hautaniemi & Elena Czeizler, 2014. "Biclustering Methods: Biological Relevance and Application in Gene Expression Analysis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    6. Diane Duffy & adolfo Quiroz, 1991. "A permutation-based algorithm for block clustering," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 65-91, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    3. Haedo, Christian & Mouchart, Michel, 2018. "Automatic biclustering of regions and sectors," LIDAM Discussion Papers ISBA 2018026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Alessandro Casa & Charles Bouveyron & Elena Erosheva & Giovanna Menardi, 2021. "Co-clustering of Time-Dependent Data via the Shape Invariant Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 626-649, October.
    5. Mingao Yuan & Fan Yang & Zuofeng Shang, 2022. "Hypothesis testing in sparse weighted stochastic block model," Statistical Papers, Springer, vol. 63(4), pages 1051-1073, August.
    6. C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
    7. Neil Hwang & Jiarui Xu & Shirshendu Chatterjee & Sharmodeep Bhattacharyya, 2022. "The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 283-320, June.
    8. Thierry Chekouo & Alejandro Murua, 2018. "High-dimensional variable selection with the plaid mixture model for clustering," Computational Statistics, Springer, vol. 33(3), pages 1475-1496, September.
    9. Zhang, Yue & Yuan, Mingao, 2020. "Nonreconstruction of high-dimensional stochastic block model with bounded degree," Statistics & Probability Letters, Elsevier, vol. 158(C).
    10. Wu, Qianyong & Hu, Jiang, 2024. "A spectral based goodness-of-fit test for stochastic block models," Statistics & Probability Letters, Elsevier, vol. 209(C).
    11. Wang, Tingting & Wang, Zhen, 2024. "A community scale test for node affiliation based on network sampling and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    12. Javier León & Juan José Escobar & Andrés Ortiz & Julio Ortega & Jesús González & Pedro Martín-Smith & John Q Gan & Miguel Damas, 2020. "Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-30, June.
    13. Mingao Yuan, 2024. "On the Rényi index of random graphs," Statistical Papers, Springer, vol. 65(3), pages 1773-1803, May.
    14. Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
    15. Haedo, Christian & Mouchart, Michel, 2019. "Two-mode clustering through profiles of regions and sectors," LIDAM Discussion Papers ISBA 2019014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Gérard Govaert & Mohamed Nadif, 2018. "Mutual information, phi-squared and model-based co-clustering for contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 455-488, September.
    17. Thomas Eckes & Peter Orlik, 1993. "An error variance approach to two-mode hierarchical clustering," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 51-74, January.
    18. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    19. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    20. Mingao Yuan, 2024. "On the Randić index and its variants of network data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 155-179, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:75:y:2023:i:6:d:10.1007_s10463-023-00869-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.