Variational inference for estimating dynamic stochastic block models through an evolutionary algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-025-00634-9
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
- Santiago Olivella & Tyler Pratt & Kosuke Imai, 2022. "Dynamic Stochastic Blockmodel Regression for Network Data: Application to International Militarized Conflicts," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1068-1081, September.
- Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chabert-Liddell, Saint-Clair & Barbillon, Pierre & Donnet, Sophie & Lazega, Emmanuel, 2021. "A stochastic block model approach for the analysis of multilevel networks: An application to the sociology of organizations," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
- Wangshu Tu & Sanjeena Subedi, 2023. "Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data," Journal of Classification, Springer;The Classification Society, vol. 40(3), pages 638-667, November.
- Paul Riverain & Simon Fossier & Mohamed Nadif, 2023. "Poisson degree corrected dynamic stochastic block model," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 135-162, March.
- Lorenzo Federico & Ayoub Mounim & Pierpaolo D’Urso & Livia De Giovanni, 2024. "Complex networks and deep learning for copper flow across countries," Annals of Operations Research, Springer, vol. 339(1), pages 937-963, August.
- Dingge Liang & Marco Corneli & Charles Bouveyron & Pierre Latouche, 2025. "Clustering by deep latent position model with graph convolutional network," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 19(1), pages 237-270, March.
- Dragana M. Pavlović & Bryan R.L. Guillaume & Soroosh Afyouni & Thomas E. Nichols, 2020. "Multi‐subject stochastic blockmodels with mixed effects for adaptive analysis of individual differences in human brain network cluster structure," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 363-396, August.
- Mengbing Li & Daniel E. Park & Maliha Aziz & Cindy M. Liu & Lance B. Price & Zhenke Wu, 2023. "Integrating sample similarities into latent class analysis: a tree‐structured shrinkage approach," Biometrics, The International Biometric Society, vol. 79(1), pages 264-279, March.
- Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
- Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
- C Matias & T Rebafka & F Villers, 2018. "A semiparametric extension of the stochastic block model for longitudinal networks," Biometrika, Biometrika Trust, vol. 105(3), pages 665-680.
- Samyajoy Pal & Christian Heumann, 2025. "Revisiting Dirichlet Mixture Model: unraveling deeper insights and practical applications," Statistical Papers, Springer, vol. 66(1), pages 1-38, January.
- Paul McLaughlin & Brian C. Franczak & Adam B. Kashlak, 2024. "Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures," Journal of Classification, Springer;The Classification Society, vol. 41(1), pages 65-93, March.
- Luca Benedetti & Eric Boniardi & Leonardo Chiani & Jacopo Ghirri & Marta Mastropietro & Andrea Cappozzo & Francesco Denti, 2024. "Variational inference for semiparametric Bayesian novelty detection in large datasets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 681-703, September.
- Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Tu, Wangshu & Browne, Ryan & Subedi, Sanjeena, 2024. "A mixture of logistic skew-normal multinomial models," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
- Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
- José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:19:y:2025:i:2:d:10.1007_s11634-025-00634-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/advdac/v19y2025i2d10.1007_s11634-025-00634-9.html