IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v15y2021i4d10.1007_s11634-021-00437-8.html
   My bibliography  Save this article

Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification

Author

Listed:
  • Roberto Medico

    (Ghent University - imec)

  • Joeri Ruyssinck

    (Ghent University - imec)

  • Dirk Deschrijver

    (Ghent University - imec)

  • Tom Dhaene

    (Ghent University - imec)

Abstract

Shapelets are discriminative subsequences extracted from time-series data. Classifiers using shapelets have proven to achieve performances competitive to state-of-the-art methods, while enhancing the model’s interpretability. While a lot of research has been done for univariate time-series shapelets, extensions for the multivariate setting have not yet received much attention. To extend shapelets-based classification to a multidimensional setting, we developed a novel architecture for shapelets learning, by embedding them as trainable weights in a multi-layer Neural Network. We also investigated the introduction of a novel learning strategy for the shapelets, comprising of two additional terms in the optimization goal, to retrieve a reduced set of uncorrelated shapelets. This paper describes the proposed architecture and presents results on ten publicly available benchmark datasets, as well as a comparison with existing state-of-the-art methods. Moreover, the proposed optimization objective leads the model to automatically select smaller sets of uncorrelated shapelets, thus requiring no additional manual optimization on typically important hyper-parameters such as number and length of shapelets. The results show how the proposed approach achieves competitive performance across the datasets, and always leads to a significant reduction in the number of shapelets used. This can make it faster for a domain expert to match shapelets to real patterns, thus enhancing the interpretability of the model. Finally, since the shapelets learnt during training can be extracted from the model they can serve as meaningful insights on the classifier’s decisions and the interactions between different dimensions.

Suggested Citation

  • Roberto Medico & Joeri Ruyssinck & Dirk Deschrijver & Tom Dhaene, 2021. "Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 911-936, December.
  • Handle: RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00437-8
    DOI: 10.1007/s11634-021-00437-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-021-00437-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-021-00437-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00437-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.