IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i4p689-703.html
   My bibliography  Save this article

A model-based safety analysis approach for airborne systems using state traversals

Author

Listed:
  • Lu Zhuang
  • Zhong Lu
  • Haijing Song
  • Xihui Liang

Abstract

Safety analysis is an important task in both the development and certification of civil aircraft. The traditional safety analysis is significantly dependent on the skills and experiences of analysts. A model-based safety analysis approach is proposed for airborne systems based on the model built with Simulink. This study builds Simulink models of typical failure modes as well as the fault injection methods. The responses of system performances are monitored by traversing all failure combinations based on a state space reduction method. The system will be in an unsafe condition when the responses exceed their thresholds. The minimal cut sets of the system are obtained automatically by recording the failure combinations leading to the unsafe condition. Finally, a lateral-directional flight control system is taken as a practical example to illustrate the application and effectiveness of our proposed method. The result shows that our method has higher accuracy and the causes of the unsafe conditions can be determined by the automatic generation of the minimal cut sets. Additionally, the cumbersome work of building a traditional safety analysis model such as the fault tree, the Markov model, or the dependence diagram can be avoided.

Suggested Citation

  • Lu Zhuang & Zhong Lu & Haijing Song & Xihui Liang, 2024. "A model-based safety analysis approach for airborne systems using state traversals," Journal of Risk and Reliability, , vol. 238(4), pages 689-703, August.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:689-703
    DOI: 10.1177/1748006X231184289
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231184289
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231184289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wu, Daohua & Zheng, Wei, 2018. "Formal model-based quantitative safety analysis using timed Coloured Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 62-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingzhe & She, Zhikun & Xu, Dan & Song, Xueying & Jia, Wei, 2025. "Complex state networks based safety analysis of complex engineering systems considering closed-loop feedback," Reliability Engineering and System Safety, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    3. Bolton, Matthew L. & Molinaro, Kylie A. & Houser, Adam M., 2019. "A formal method for assessing the impact of task-based erroneous human behavior on system safety," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 168-180.
    4. Yifan Chen & Genbao Zhang & Yan Ran, 2019. "Risk Analysis of Coupling Fault Propagation Based on Meta-Action for Computerized Numerical Control (CNC) Machine Tool," Complexity, Hindawi, vol. 2019, pages 1-11, July.
    5. Dongming Xiang & Fang Zhao & Yaping Liu, 2021. "DICER 2.0: A New Model Checker for Data-Flow Errors of Concurrent Software Systems," Mathematics, MDPI, vol. 9(9), pages 1-20, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:4:p:689-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.