IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v228y2014i6p606-620.html
   My bibliography  Save this article

Reliability of warm-standby systems subject to imperfect fault coverage

Author

Listed:
  • Ola Tannous
  • Liudong Xing
  • Rui Peng
  • Min Xie

Abstract

This article models and analyzes the reliability of warm-standby systems subject to imperfect fault coverage based on sequential multistate decision diagrams. For warm-standby systems, the standby units have different failure rates before and after they are used to replace the online faulty unit. Furthermore, a component fault may propagate through the system and cause the entire system to fail if the fault is uncovered or undetected due to the imperfect system recovery mechanism. Existing works on warm-standby systems with imperfect fault coverage are restricted to some special cases, such as cases assuming an exponential time-to-failure distribution for all the system components or cases considering only one warm spare unit. The proposed sequential multistate decision diagram–based approach can overcome the limitations of the existing approaches. Examples are given to illustrate its advantages and applications.

Suggested Citation

  • Ola Tannous & Liudong Xing & Rui Peng & Min Xie, 2014. "Reliability of warm-standby systems subject to imperfect fault coverage," Journal of Risk and Reliability, , vol. 228(6), pages 606-620, December.
  • Handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:606-620
    DOI: 10.1177/1748006X14541255
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14541255
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14541255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rauzy, Antoine B., 2011. "Sequence Algebra, Sequence Decision Diagrams and Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 785-792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xiaoyue & Hillston, Jane, 2015. "Mission reliability of semi-Markov systems under generalized operational time requirements," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 122-129.
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Heterogeneous 1-out-of-N warm standby systems with online checkpointing," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 127-136.
    3. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
    2. Pierre-Yves Piriou & Jean-Marc Faure & Jean-Jacques Lesage, 2022. "Finding the minimal cut sequences of dynamic, repairable, and reconfigurable systems from Generalized Boolean logic Driven Markov Process models," Journal of Risk and Reliability, , vol. 236(1), pages 209-220, February.
    3. Rauzy, Antoine & Blériot-Fabre, Chaire, 2015. "Towards a sound semantics for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 184-191.
    4. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    5. Daochuan Ge & Meng Lin & Yanhua Yang & Ruoxing Zhang & Qiang Chou, 2015. "Reliability analysis of complex dynamic fault trees based on an adapted K.D. Heidtmann algorithm," Journal of Risk and Reliability, , vol. 229(6), pages 576-586, December.
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:228:y:2014:i:6:p:606-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.