IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v38y2018i4p439-451.html
   My bibliography  Save this article

Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

Author

Listed:
  • Matthew J. Glover

    (Health Economics Research Group, Brunel University London, Uxbridge, Middlesex, UK)

  • Edmund Jones

    (Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK)

  • Katya L. Masconi

    (Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK)

  • Michael J. Sweeting

    (Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK)

  • Simon G. Thompson

    (Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, UK)

Abstract

Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (£20,000 to £30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies.

Suggested Citation

  • Matthew J. Glover & Edmund Jones & Katya L. Masconi & Michael J. Sweeting & Simon G. Thompson, 2018. "Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening," Medical Decision Making, , vol. 38(4), pages 439-451, May.
  • Handle: RePEc:sae:medema:v:38:y:2018:i:4:p:439-451
    DOI: 10.1177/0272989X17753380
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X17753380
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X17753380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Karnon & Hossein Haji Ali Afzali, 2014. "When to Use Discrete Event Simulation (DES) for the Economic Evaluation of Health Technologies? A Review and Critique of the Costs and Benefits of DES," PharmacoEconomics, Springer, vol. 32(6), pages 547-558, June.
    2. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    3. Jonathan Karnon, 2003. "Alternative decision modelling techniques for the evaluation of health care technologies: Markov processes versus discrete event simulation," Health Economics, John Wiley & Sons, Ltd., vol. 12(10), pages 837-848, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao-Jen Weng & Ming-Che Tsai & Yao-Te Tsai & Donald F. Gotcher & Chih-Hao Chen & Shih-Chia Liu & Yeong-Yuh Xu & Seung-Hwan Kim, 2019. "Improving the Efficiency of an Emergency Department Based on Activity-Relationship Diagram and Radio Frequency Identification Technology," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    2. Reda Lebcir & Usame Yakutcan & Eren Demir, 2022. "A decision support tool with health economic modelling for better management of DVT patients," Health Economics Review, Springer, vol. 12(1), pages 1-16, December.
    3. Giovanni Improta & Guido Guizzi & Carlo Ricciardi & Vincenzo Giordano & Alfonso Maria Ponsiglione & Giuseppe Converso & Maria Triassi, 2020. "Agile Six Sigma in Healthcare: Case Study at Santobono Pediatric Hospital," IJERPH, MDPI, vol. 17(3), pages 1-17, February.
    4. Carmen María Yago & Francisco Javier Díez, 2023. "DESnets: A Graphical Representation for Discrete Event Simulation and Cost-Effectiveness Analysis," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    5. Wesley J. Marrero & Mariel S. Lavieri & Jeremy B. Sussman, 2021. "Optimal cholesterol treatment plans and genetic testing strategies for cardiovascular diseases," Health Care Management Science, Springer, vol. 24(1), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Ethgen & Baudouin Standaert, 2012. "Population–versus Cohort–Based Modelling Approaches," PharmacoEconomics, Springer, vol. 30(3), pages 171-181, March.
    2. L. B. Standfield & T. A. Comans & P. A. Scuffham, 2017. "An empirical comparison of Markov cohort modeling and discrete event simulation in a capacity-constrained health care setting," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(1), pages 33-47, January.
    3. John Graves & Shawn Garbett & Zilu Zhou & Jonathan S. Schildcrout & Josh Peterson, 2021. "Comparison of Decision Modeling Approaches for Health Technology and Policy Evaluation," Medical Decision Making, , vol. 41(4), pages 453-464, May.
    4. Penny R. Breeze & Hazel Squires & Kate Ennis & Petra Meier & Kate Hayes & Nik Lomax & Alan Shiell & Frank Kee & Frank de Vocht & Martin O’Flaherty & Nigel Gilbert & Robin Purshouse & Stewart Robinson , 2023. "Guidance on the use of complex systems models for economic evaluations of public health interventions," Health Economics, John Wiley & Sons, Ltd., vol. 32(7), pages 1603-1625, July.
    5. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    6. Ruth A. Lewis & Dyfrig Hughes & Alex J. Sutton & Clare Wilkinson, 2021. "Quantitative Evidence Synthesis Methods for the Assessment of the Effectiveness of Treatment Sequences for Clinical and Economic Decision Making: A Review and Taxonomy of Simplifying Assumptions," PharmacoEconomics, Springer, vol. 39(1), pages 25-61, January.
    7. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    8. Syed Mohiuddin, 2014. "A Systematic and Critical Review of Model-Based Economic Evaluations of Pharmacotherapeutics in Patients with Bipolar Disorder," Applied Health Economics and Health Policy, Springer, vol. 12(4), pages 359-372, August.
    9. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    10. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    11. Carmen María Yago & Francisco Javier Díez, 2023. "DESnets: A Graphical Representation for Discrete Event Simulation and Cost-Effectiveness Analysis," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    12. Lih-Wen Mau & Jaime M. Preussler & Linda J. Burns & Susan Leppke & Navneet S. Majhail & Christa L. Meyer & Tatenda Mupfudze & Wael Saber & Patricia Steinert & David J. Vanness, 2020. "Healthcare Costs of Treating Privately Insured Patients with Acute Myeloid Leukemia in the United States from 2004 to 2014: A Generalized Additive Modeling Approach," PharmacoEconomics, Springer, vol. 38(5), pages 515-526, May.
    13. Heß, Michael (Ed.) & Schlieter, Hannes (Ed.), 2014. "Modellierung im Gesundheitswesen: Tagungsband des Workshops im Rahmen der Modellierung 2014," ICB Research Reports 57, University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB).
    14. Annemieke Leunis & W. Redekop & Kees van Montfort & Bob Löwenberg & Carin Uyl-de Groot, 2013. "The Development and Validation of a Decision-Analytic Model Representing the Full Disease Course of Acute Myeloid Leukemia," PharmacoEconomics, Springer, vol. 31(7), pages 605-621, July.
    15. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    16. Bernhard Ultsch & Oliver Damm & Philippe Beutels & Joke Bilcke & Bernd Brüggenjürgen & Andreas Gerber-Grote & Wolfgang Greiner & Germaine Hanquet & Raymond Hutubessy & Mark Jit & Mirjam Knol & Rüdiger, 2016. "Methods for Health Economic Evaluation of Vaccines and Immunization Decision Frameworks: A Consensus Framework from a European Vaccine Economics Community," PharmacoEconomics, Springer, vol. 34(3), pages 227-244, March.
    17. Hossein Haji Ali Afzali & Laura Bojke & Jonathan Karnon, 2018. "Model Structuring for Economic Evaluations of New Health Technologies," PharmacoEconomics, Springer, vol. 36(11), pages 1309-1319, November.
    18. Becky Pennington & Alex Filby & Lesley Owen & Matthew Taylor, 2018. "Smoking Cessation: A Comparison of Two Model Structures," PharmacoEconomics, Springer, vol. 36(9), pages 1101-1112, September.
    19. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    20. Hossein Haji Ali Afzali & Jonathan Karnon & Jodi Gray, 2012. "A proposed model for economic evaluations of major depressive disorder," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(4), pages 501-510, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:38:y:2018:i:4:p:439-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.