IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v15y2019i2p1550147719831180.html
   My bibliography  Save this article

Optimal defense strategy based on the mean field game model for cyber security

Author

Listed:
  • Li Miao
  • Lina Wang
  • Shuai Li
  • Haitao Xu
  • Xianwei Zhou

Abstract

With the evolution of research on defense strategies in cyber security, the choice of an optimal strategy has become a key problem in current studies. Focusing on the balance between individual cost and overall network cost, we present an application of mean field game in large-scale defenders in cyber security, where players seek to construct an optimal defense strategy at their minimum cost. The contributions are threefold: first, we propose an individual cost function based on the mean field game in Hilbert space and discuss the overall network cost function, where each player has discrete-time dynamics. Then, the Nash equilibrium of the individual cost function with infinite players is researched. Finally, we establish an optimal condition in which the game equilibrium is the optimal solution to the overall cost function. Numerical examples are provided to illustrate the effectiveness of the presented strategy with an appropriate assumption.

Suggested Citation

  • Li Miao & Lina Wang & Shuai Li & Haitao Xu & Xianwei Zhou, 2019. "Optimal defense strategy based on the mean field game model for cyber security," International Journal of Distributed Sensor Networks, , vol. 15(2), pages 15501477198, February.
  • Handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719831180
    DOI: 10.1177/1550147719831180
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147719831180
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147719831180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Bensoussan & K. Sung & S. Yam, 2013. "Linear–Quadratic Time-Inconsistent Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 537-552, December.
    2. Saim Bin Abdul Khaliq & Muhammad Faisal Amjad & Haider Abbas & Narmeen Shafqat & Hammad Afzal, 2019. "Defence against PUE attacks in ad hoc cognitive radio networks: a mean field game approach," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(1), pages 123-140, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    2. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    3. Vassili N. Kolokoltsov, 2021. "Quantum Mean-Field Games with the Observations of Counting Type," Games, MDPI, vol. 12(1), pages 1-14, January.
    4. Qinglong Zhou & Gaofeng Zong, 2016. "Time-Inconsistent Stochastic Linear-quadratic Differential Game," Papers 1607.00638, arXiv.org.
    5. Alain Bensoussan & Guiyuan Ma & Chi Chung Siu & Sheung Chi Phillip Yam, 2022. "Dynamic mean–variance problem with frictions," Finance and Stochastics, Springer, vol. 26(2), pages 267-300, April.
    6. Heng-fu Zou, 2025. "Tariff Wars and the Mercantilist-Nationalist Trap: A Mean Field Game of Strategic Trade and Global Finance," CEMA Working Papers 760, China Economics and Management Academy, Central University of Finance and Economics.
    7. Arvind V. Shrivats & Dena Firoozi & Sebastian Jaimungal, 2022. "A mean‐field game approach to equilibrium pricing in solar renewable energy certificate markets," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 779-824, July.
    8. Dena Firoozi & Arvind V Shrivats & Sebastian Jaimungal, 2021. "Principal agent mean field games in REC markets," Papers 2112.11963, arXiv.org, revised Jun 2022.
    9. Luchnikov, I. & Métivier, D. & Ouerdane, H. & Chertkov, M., 2021. "Super-relaxation of space–time-quantized ensemble of energy loads to curtail their synchronization after demand response perturbation," Applied Energy, Elsevier, vol. 285(C).
    10. Zongxia Liang & Keyu Zhang, 2023. "Time-inconsistent mean field and n-agent games under relative performance criteria," Papers 2312.14437, arXiv.org, revised Apr 2024.
    11. René Carmona & Gökçe Dayanıklı & Mathieu Laurière, 2022. "Mean Field Models to Regulate Carbon Emissions in Electricity Production," Dynamic Games and Applications, Springer, vol. 12(3), pages 897-928, September.
    12. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    13. Chen, Jiayu & Kuboyama, Tatsuya & Shen, Tielong, 2025. "Collective behavior information-based design approach to energy management strategy for large-scale population of HEVs," Applied Energy, Elsevier, vol. 377(PC).
    14. Boualem Djehiche & Minyi Huang, 2016. "A Characterization of Sub-game Perfect Equilibria for SDEs of Mean-Field Type," Dynamic Games and Applications, Springer, vol. 6(1), pages 55-81, March.
    15. Diogo Gomes & João Saúde, 2014. "Mean Field Games Models—A Brief Survey," Dynamic Games and Applications, Springer, vol. 4(2), pages 110-154, June.
    16. Berkay Anahtarci & Can Deha Kariksiz & Naci Saldi, 2023. "Q-Learning in Regularized Mean-field Games," Dynamic Games and Applications, Springer, vol. 13(1), pages 89-117, March.
    17. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    18. Piotr Więcek, 2024. "Multiple-Population Discrete-Time Mean Field Games with Discounted and Total Payoffs: The Existence of Equilibria," Dynamic Games and Applications, Springer, vol. 14(4), pages 997-1026, September.
    19. Romuald Elie & Thibaut Mastrolia & Dylan Possamaï, 2019. "A Tale of a Principal and Many, Many Agents," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 440-467, May.
    20. Jianhui Huang & Wenqiang Li & Hanyu Zhao, 2023. "A Class of Optimal Control Problems of Forward–Backward Systems with Input Constraint," Journal of Optimization Theory and Applications, Springer, vol. 199(3), pages 1050-1084, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:15:y:2019:i:2:p:1550147719831180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.