IDEAS home Printed from https://ideas.repec.org/a/rsr/journl/v60y2012i5p73-86.html
   My bibliography  Save this article

Multiple Logistic Regression Model To Predict Risk Factors Of Oral Health Diseases

Author

Listed:
  • Shivalingappa B Javali

    (SDM College of Dental Sciences, Karnataka, India)

  • Parameshwar V Pandit

    (Bangalore University, Karnataka, India)

Abstract

Purpose: To analysis the dependence of oral health diseases i.e. dental caries and periodontal disease on considering the number of risk factors through the applications of logistic regression model. Method: The cross sectional study involves a systematic random sample of 1760 permanent dentition aged between 18-40 years in Dharwad, Karnataka, India. Dharwad is situated in North Karnataka. The mean age was 34.26±7.28. The risk factors of dental caries and periodontal disease were established by multiple logistic regression model using SPSS statistical software. Results: The factors like frequency of brushing, timings of cleaning teeth and type of toothpastes are significant persistent predictors of dental caries and periodontal disease. The log likelihood value of full model is –1013.1364 and Akaike’s Information Criterion (AIC) is 1.1752 as compared to reduced regression model are -1019.8106 and 1.1748 respectively for dental caries. But, the log likelihood value of full model is –1085.7876 and AIC is 1.2577 followed by reduced regression model are -1019.8106 and 1.1748 respectively for periodontal disease. The area under Receiver Operating Characteristic (ROC) curve for the dental caries is 0.7509 (full model) and 0.7447 (reduced model); the ROC for the periodontal disease is 0.6128 (full model) and 0.5821 (reduced model). Conclusions: The frequency of brushing, timings of cleaning teeth and type of toothpastes are main significant risk factors of dental caries and periodontal disease. The fitting performance of reduced logistic regression model is slightly a better fit as compared to full logistic regression model in identifying the these risk factors for both dichotomous dental caries and periodontal disease.

Suggested Citation

  • Shivalingappa B Javali & Parameshwar V Pandit, 2012. "Multiple Logistic Regression Model To Predict Risk Factors Of Oral Health Diseases," Romanian Statistical Review, Romanian Statistical Review, vol. 60(5), pages 73-86, June.
  • Handle: RePEc:rsr:journl:v:60:y:2012:i:5:p:73-86
    as

    Download full text from publisher

    File URL: http://www.revistadestatistica.ro/Articole/2012/art7en_rrs_5_2012.pdf
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Lionte & Victorita Sorodoc & Cristina Tuchilus & Elisabeta Jaba, 2016. "Likelihood Estimation of the Systemic Poison-Induced Morbidity in an Adult North Eastern Romanian Population," Romanian Statistical Review, Romanian Statistical Review, vol. 64(4), pages 87-99, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsr:journl:v:60:y:2012:i:5:p:73-86. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Adrian Visoiu) or (Constantin Mecu). General contact details of provider: http://edirc.repec.org/data/stagvro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.