Author
Abstract
This paper investigates how artificial intelligence (AI), when integrated with multilayer network analysis, enhances compliance in transfer pricing (TP) for multinational enterprises (MNEs). Using a simulation-based model aligned with OECD 2022 Guidelines, we assess whether AI improves pricing alignment, reduces audit risk, and mitigates profit allocation deviations across jurisdictions. The model structures intercompany transactions across goods, services, and intangibles into distinct network layers, highlighting how AI-enabled diagnostics affect compliance outcomes. Results suggest that AI substantially improves compliance accuracy, especially in entities with high network centrality. This framework offers policymakers and tax professionals a scalable, regulation-aligned approach for real-time benchmarking and risk monitoring in an increasingly digital tax environment. Furthermore, the findings offer actionable insights for international policymakers aiming to design adaptive tax governance frameworks that incorporate algorithmic oversight and digital audit tools in response to evolving cross-border economic activity. Intelligenza artificiale e transfer pricing: un modello di network multistrato per la conformità e mitigazione del rischio Questo studio esamina l’impatto dell’intelligenza artificiale (IA), integrata con l’analisi dei network multistrato, sulla conformità nei prezzi di trasferimento per le imprese multinazionali. Utilizzando un modello basato su simulazione allineato alle Linee Guida OCSE 2022, ci si chiede se l’IA migliori l’allineamento dei prezzi, riduca il rischio di audit e mitighi le deviazioni nell’allocazione dei profitti tra giurisdizioni. Il modello struttura le transazioni interaziendali riguardanti beni, servizi e beni immateriali in distinti strati di rete, evidenziando come i modelli diagnostici abilitati dall’IA influenzino i risultati di conformità. I risultati suggeriscono che l’IA migliora sostanzialmente l’accuratezza e la conformità dei confronti, soprattutto in centri direzionali centrali (hub) nell’ambito del network. Questo quadro offre un approccio scalabile, allineato alla normativa per il benchmarking in tempo reale e il monitoraggio del rischio in un ambiente fiscale sempre più digitalizzato.
Suggested Citation
Roberto Moro Visconti, 2026.
"Artificial Intelligence and Transfer Pricing: A Multilayer Network Model for Compliance and Risk Mitigation,"
Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 79(1), pages 51-90, February.
Handle:
RePEc:ris:ecoint:022211
DOI: 10.65644/EIIE.079.01.0051
Download full text from publisher
More about this item
Keywords
;
;
;
;
;
;
JEL classification:
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- F23 - International Economics - - International Factor Movements and International Business - - - Multinational Firms; International Business
- H25 - Public Economics - - Taxation, Subsidies, and Revenue - - - Business Taxes and Subsidies
- K34 - Law and Economics - - Other Substantive Areas of Law - - - Tax Law
- L86 - Industrial Organization - - Industry Studies: Services - - - Information and Internet Services; Computer Software
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:ecoint:022211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Procopio (email available below). General contact details of provider: https://edirc.repec.org/data/cacogit.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.