IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1004080.html
   My bibliography  Save this article

Ly6Chigh Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells

Author

Listed:
  • Natasha M Girgis
  • Uma Mahesh Gundra
  • Lauren N Ward
  • Mynthia Cabrera
  • Ute Frevert
  • P'ng Loke

Abstract

Alternatively activated macrophages (AAM) that accumulate during chronic T helper 2 inflammatory conditions may arise through proliferation of resident macrophages or recruitment of monocyte-derived cells. Liver granulomas that form around eggs of the helminth parasite Schistosoma mansoni require AAM to limit tissue damage. Here, we characterized monocyte and macrophage dynamics in the livers of infected CX3CR1GFP/+ mice. CX3CR1-GFP+ monocytes and macrophages accumulated around eggs and in granulomas during infection and upregulated PD-L2 expression, indicating differentiation into AAM. Intravital imaging of CX3CR1-GFP+ Ly6Clow monocytes revealed alterations in patrolling behavior including arrest around eggs that were not encased in granulomas. Differential labeling of CX3CR1-GFP+ cells in the blood and the tissue showed CD4+ T cell dependent accumulation of PD-L2+ CX3CR1-GFP+ AAM in the tissues as granulomas form. By adoptive transfer of Ly6Chigh and Ly6Clow monocytes into infected mice, we found that AAM originate primarily from transferred Ly6Chigh monocytes, but that these cells may transition through a Ly6Clow state and adopt patrolling behavior in the vasculature. Thus, during chronic helminth infection AAM can arise from recruited Ly6Chigh monocytes via help from CD4+ T cells.Author Summary: Macrophages will adopt different characteristics based on different types of inflammatory responses. During infection by parasitic helminths such as Schistosoma mansoni, macrophages adopt an “alternatively activated” or M2 phenotype (AAM). These AAM are important for protecting liver hepatocytes from damage caused by the parasite eggs. Here, we examine the cellular source of AAM in the liver of mice infected with S. mansoni. We find that AAM during S. mansoni infection come from monocytes and not from tissue resident macrophages. Monocytes can be separated into Ly6Chigh and Ly6Clow monocyte subsets. We demonstrate that it is the Ly6Chigh monocytes that are the precursors of AAM in the liver granulomas, but they might adopt the behavior of Ly6Clow monocytes in response to schistosome eggs. Additionally, these Ly6CHigh monocytes require help from CD4+ T cells in order to differentiate into AAM or to maintain this phenotype.

Suggested Citation

  • Natasha M Girgis & Uma Mahesh Gundra & Lauren N Ward & Mynthia Cabrera & Ute Frevert & P'ng Loke, 2014. "Ly6Chigh Monocytes Become Alternatively Activated Macrophages in Schistosome Granulomas with Help from CD4+ Cells," PLOS Pathogens, Public Library of Science, vol. 10(6), pages 1-13, June.
  • Handle: RePEc:plo:ppat00:1004080
    DOI: 10.1371/journal.ppat.1004080
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004080
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1004080&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1004080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khoa D. Nguyen & Yifu Qiu & Xiaojin Cui & Y. P. Sharon Goh & Julia Mwangi & Tovo David & Lata Mukundan & Frank Brombacher & Richard M. Locksley & Ajay Chawla, 2011. "Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis," Nature, Nature, vol. 480(7375), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kensuke Miyake & Junya Ito & Kazufusa Takahashi & Jun Nakabayashi & Frank Brombacher & Shigeyuki Shichino & Soichiro Yoshikawa & Sachiko Miyake & Hajime Karasuyama, 2024. "Single-cell transcriptomics identifies the differentiation trajectory from inflammatory monocytes to pro-resolving macrophages in a mouse skin allergy model," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xian Zhang & Songyuan Luo & Minjie Wang & Qiongqiong Cao & Zhixin Zhang & Qin Huang & Jie Li & Zhiyong Deng & Tianxiao Liu & Cong-Lin Liu & Mathilde Meppen & Amelie Vromman & Richard A. Flavell & Gökh, 2022. "Differential IL18 signaling via IL18 receptor and Na-Cl co-transporter discriminating thermogenesis and glucose metabolism regulation," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Suyang Wu & Chen Qiu & Jiahao Ni & Wenli Guo & Jiyuan Song & Xingyin Yang & Yulin Sun & Yanjun Chen & Yunxia Zhu & Xiaoai Chang & Peng Sun & Chunxia Wang & Kai Li & Xiao Han, 2024. "M2 macrophages independently promote beige adipogenesis via blocking adipocyte Ets1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Prameladevi Chinnasamy & Isabel Casimiro & Dario F. Riascos-Bernal & Shreeganesh Venkatesh & Dippal Parikh & Alishba Maira & Aparna Srinivasan & Wei Zheng & Elena Tarabra & Haihong Zong & Smitha Jayak, 2023. "Increased adipose catecholamine levels and protection from obesity with loss of Allograft Inflammatory Factor-1," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Shaojian Lin & Anke Zhang & Ling Yuan & Yufan Wang & Chuan Zhang & Junkun Jiang & Houshi Xu & Huiwen Yuan & Hui Yao & Qianying Zhang & Yong Zhang & Meiqing Lou & Ping Wang & Zhen-Ning Zhang & Bing Lua, 2022. "Targeting parvalbumin promotes M2 macrophage polarization and energy expenditure in mice," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Jing Yan & Yuemei Zhang & Hairong Yu & Yicen Zong & Daixi Wang & Jiangfei Zheng & Li Jin & Xiangtian Yu & Caizhi Liu & Yi Zhang & Feng Jiang & Rong Zhang & Xiangnan Fang & Ting Xu & Mingyu Li & Jianzh, 2022. "GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages," Nature Communications, Nature, vol. 13(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1004080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.