IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/1002806.html
   My bibliography  Save this article

Structure-guided Alterations of the gp41-directed HIV-1 Broadly Neutralizing Antibody 2F5 Reveal New Properties Regarding its Neutralizing Function

Author

Listed:
  • Javier Guenaga
  • Richard T Wyatt

Abstract

The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation. Author Summary: Host antibodies raised in response to acute viral infection are often protective to second exposure. However, in the less frequent examples of chronic infection, in which the virus actively replicates for prolonged periods, host immunity can impact on viral characteristics by applying selective pressures upon progeny. Such a dynamic process is exemplified by the extremely variable and pathogenic human immunodeficiency virus type 1 (HIV-1). Relatively infrequently, antibodies are elicited during infection that can neutralize a diverse array of this malleable pathogen. Hence, studies which elucidate such antibodies are elevated in importance if the pathogen causes human suffering, yet no vaccine exists. Here, we describe a new property of the broadly neutralizing antibody, 2F5, which is directed to a conserved region of the HIV-1 surface protein near the lipid membrane. Through mutagenesis of the antibody and subsequent functional analysis, we present data that suggest a model in which the antibody first binds downstream of its known core epitope in a two-step process not directly involving the lipid membrane. Such studies may better elucidate the not yet defined details of virus-to-cell fusion by which viral DNA enters host target cells. Additionally, such analysis reveals 2F5 binding specificities, important for future vaccine designs.

Suggested Citation

  • Javier Guenaga & Richard T Wyatt, 2012. "Structure-guided Alterations of the gp41-directed HIV-1 Broadly Neutralizing Antibody 2F5 Reveal New Properties Regarding its Neutralizing Function," PLOS Pathogens, Public Library of Science, vol. 8(7), pages 1-15, July.
  • Handle: RePEc:plo:ppat00:1002806
    DOI: 10.1371/journal.ppat.1002806
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002806
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1002806&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.1002806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jun Liu & Alberto Bartesaghi & Mario J. Borgnia & Guillermo Sapiro & Sriram Subramaniam, 2008. "Molecular architecture of native HIV-1 gp120 trimers," Nature, Nature, vol. 455(7209), pages 109-113, September.
    2. W. Weissenhorn & A. Dessen & S. C. Harrison & J. J. Skehel & D. C. Wiley, 1997. "Atomic structure of the ectodomain from HIV-1 gp41," Nature, Nature, vol. 387(6631), pages 426-430, May.
    3. Tongqing Zhou & Ling Xu & Barna Dey & Ann J. Hessell & Donald Van Ryk & Shi-Hua Xiang & Xinzhen Yang & Mei-Yun Zhang & Michael B. Zwick & James Arthos & Dennis R. Burton & Dimiter S. Dimitrov & Joseph, 2007. "Structural definition of a conserved neutralization epitope on HIV-1 gp120," Nature, Nature, vol. 445(7129), pages 732-737, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Gang Ren, 2012. "IPET and FETR: Experimental Approach for Studying Molecular Structure Dynamics by Cryo-Electron Tomography of a Single-Molecule Structure," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-19, January.
    2. Wen-Han Yu & Peng Zhao & Monia Draghi & Claudia Arevalo & Christina B Karsten & Todd J Suscovich & Bronwyn Gunn & Hendrik Streeck & Abraham L Brass & Michael Tiemeyer & Michael Seaman & John R Mascola, 2018. "Exploiting glycan topography for computational design of Env glycoprotein antigenicity," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-28, April.
    3. Zhi Yang & Kim-Marie A. Dam & Michael D. Bridges & Magnus A. G. Hoffmann & Andrew T. DeLaitsch & Harry B. Gristick & Amelia Escolano & Rajeev Gautam & Malcolm A. Martin & Michel C. Nussenzweig & Wayne, 2022. "Neutralizing antibodies induced in immunized macaques recognize the CD4-binding site on an occluded-open HIV-1 envelope trimer," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Gregory H. Bird & J. J. Patten & William Zavadoski & Nicole Barucci & Marina Godes & Benjamin M. Moyer & Callum D. Owen & Paul DaSilva-Jardine & Donna S. Neuberg & Richard A. Bowen & Robert A. Davey &, 2024. "A stapled lipopeptide platform for preventing and treating highly pathogenic viruses of pandemic potential," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Terrence M Dobrowsky & Brian R Daniels & Robert F Siliciano & Sean X Sun & Denis Wirtz, 2010. "Organization of Cellular Receptors into a Nanoscale Junction during HIV-1 Adhesion," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1002806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.