IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/0030015.html
   My bibliography  Save this article

Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H

Author

Listed:
  • Vanessa B Soros
  • Wes Yonemoto
  • Warner C Greene

Abstract

APOBEC3G (A3G) is a potent antiretroviral deoxycytidine deaminase that, when incorporated into HIV virions, hypermutates nascent viral DNA formed during reverse transcription. HIV Vif counters the effect of A3G by depleting intracellular stores of the enzyme, thereby blocking its virion incorporation. Through pulse-chase analyses, we demonstrate that virion A3G is mainly recruited from the cellular pool of newly synthesized enzyme compared to older “mature” A3G already residing in high-molecular-mass RNA–protein complexes. Virion-incorporated A3G forms a large complex with viral genomic RNA that is clearly distinct from cellular HMM A3G complexes, as revealed by both gel filtration and biochemical fractionation. Unexpectedly, the enzymatic activity of virion-incorporated A3G is lost upon its stable association with HIV RNA. The activity of the latent A3G enzyme is ultimately restored during reverse transcription by the action of HIV RNase H. Degradation of the viral genomic RNA by RNase H not only generates the minus-strand DNA substrate targeted by A3G for hypermutation but also removes the inhibitory RNA bound to A3G, thereby enabling its function as a deoxycytidine deaminase. These findings highlight an unexpected interplay between host and virus where initiation of antiviral enzymatic activity is dependent on the action of an essential viral enzyme.: APOBEC3G (A3G) is a cellular enzyme that promotes DNA mutagenesis and can restrict infection by HIV-1. However, HIV counters the antiviral effects of A3G through the action of its Vif protein. In the absence of Vif, A3G is effectively incorporated into virions, where it mutagenizes the first DNA copy (cDNA) generated during reverse transcription of the viral RNA genome. A3G also appears to be able to inhibit HIV via nonenzymatic mechanisms. A3G and related deoxycytidine deaminases can also inhibit the growth of retroviruses other than HIV and protect the cellular genome from endogenous mobile retroelements. In this study, we analyzed the recruitment and enzymatic activity of A3G incorporated into HIVΔVif virions. Unexpectedly, we found that the binding of A3G to viral genomic RNA led to inactivation of the enzyme. However, latent A3G was ultimately activated through the action of HIV RNase H, which degrades the RNA genome during reverse transcription. These findings highlight an unexpected interplay between a host enzyme and HIV, where the antiviral enzymatic activity of the host factor (A3G) is dependent on the action of an essential HIV enzyme (RNase H). The strong interaction with viral RNA also suggests a potential mechanism by which A3G could exert antiviral activity in the absence of enzymatic activity, by physically impeding reverse transcription.

Suggested Citation

  • Vanessa B Soros & Wes Yonemoto & Warner C Greene, 2007. "Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H," PLOS Pathogens, Public Library of Science, vol. 3(2), pages 1-16, February.
  • Handle: RePEc:plo:ppat00:0030015
    DOI: 10.1371/journal.ppat.0030015
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.0030015
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.0030015&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.0030015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zhang & Bin Yang & Roger J. Pomerantz & Chune Zhang & Shyamala C. Arunachalam & Ling Gao, 2003. "The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA," Nature, Nature, vol. 424(6944), pages 94-98, July.
    2. Ann M. Sheehy & Nathan C. Gaddis & Jonathan D. Choi & Michael H. Malim, 2002. "Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein," Nature, Nature, vol. 418(6898), pages 646-650, August.
    3. Bastien Mangeat & Priscilla Turelli & Gersende Caron & Marc Friedli & Luc Perrin & Didier Trono, 2003. "Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts," Nature, Nature, vol. 424(6944), pages 99-103, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    2. Hanjing Yang & Kyumin Kim & Shuxing Li & Josue Pacheco & Xiaojiang S. Chen, 2022. "Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Patric Jern & Rebecca A Russell & Vinay K Pathak & John M Coffin, 2009. "Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance," PLOS Pathogens, Public Library of Science, vol. 5(4), pages 1-9, April.
    4. Hannah O. Ajoge & Tyler M. Renner & Kasandra Bélanger & Matthew Greig & Samar Dankar & Hinissan P. Kohio & Macon D. Coleman & Emmanuel Ndashimye & Eric J. Arts & Marc-André Langlois & Stephen D. Barr, 2023. "Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Fumiaki Ito & Ana L. Alvarez-Cabrera & Kyumin Kim & Z. Hong Zhou & Xiaojiang S. Chen, 2023. "Structural basis of HIV-1 Vif-mediated E3 ligase targeting of host APOBEC3H," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Beth K Thielen & Kevin C Klein & Lorne W Walker & Mary Rieck & Jane H Buckner & Garrett W Tomblingson & Jaisri R Lingappa, 2007. "T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity," PLOS Pathogens, Public Library of Science, vol. 3(9), pages 1-15, September.
    7. Diako Ebrahimi & Hamid Alinejad-Rokny & Miles P Davenport, 2014. "Insights into the Motif Preference of APOBEC3 Enzymes," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    8. Takahide Kouno & Satoshi Shibata & Megumi Shigematsu & Jaekyung Hyun & Tae Gyun Kim & Hiroshi Matsuo & Matthias Wolf, 2023. "Structural insights into RNA bridging between HIV-1 Vif and antiviral factor APOBEC3G," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Jing Ma & Xiaoyu Li & Jian Xu & Quan Zhang & Zhenlong Liu & Pingping Jia & Jinming Zhou & Fei Guo & Xuefu You & Liyan Yu & Lixun Zhao & Jiandong Jiang & Shan Cen, 2013. "The Roles of APOBEC3G Complexes in the Incorporation of APOBEC3G into HIV-1," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    10. Atanu Maiti & Adam K. Hedger & Wazo Myint & Vanivilasini Balachandran & Jonathan K. Watts & Celia A. Schiffer & Hiroshi Matsuo, 2022. "Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Joseph Hiatt & Judd F. Hultquist & Michael J. McGregor & Mehdi Bouhaddou & Ryan T. Leenay & Lacy M. Simons & Janet M. Young & Paige Haas & Theodore L. Roth & Victoria Tobin & Jason A. Wojcechowskyj & , 2022. "A functional map of HIV-host interactions in primary human T cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:0030015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.