IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0336702.html

Finite set model predictive control of permanent magnet synchronous motor current based on super twisting sliding mode observer

Author

Listed:
  • Huanhuan Ren
  • Chengzhi Su
  • Ranxiang Long

Abstract

This paper proposes a current model predictive control strategy for the permanent magnet synchronous motor (PMSM) based on a novel sliding mode observer to reduce the cost of PMSM and ensure good tracking performance. A super twisting sliding mode observer (STSMO) is designed to address the issues of high-frequency chattering and noise sensitivity caused by the large positive gain of traditional SMO. The discontinuous effect of the traditional SMO switching function is introduced into the derivative of the control rate, and a smooth estimate of the back electromotive force (EMF) is obtained through integration. Replace the sign function with a sigmoid function with smooth continuity to further reduce the chattering effect. To enhance the dynamic performance of the PMSM current loop, a finite control set model predictive control (FCS-MPC) strategy is employed in place of the conventional PI controller. Within each sampling period, all possible switching states are evaluated, and the optimal one is selected and directly applied to the inverter. Additionally, a dual-vector model predictive current control (DVMPCC) method is adopted to reduce current ripple. This approach synthesizes a voltage vector with arbitrary magnitude and direction by combining two voltage vectors within each sampling period. Numerical results demonstrate that the proposed sensorless PMSM predictive current control method achieves high accuracy in speed estimation and excellent dynamic response performance.

Suggested Citation

  • Huanhuan Ren & Chengzhi Su & Ranxiang Long, 2025. "Finite set model predictive control of permanent magnet synchronous motor current based on super twisting sliding mode observer," PLOS ONE, Public Library of Science, vol. 20(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0336702
    DOI: 10.1371/journal.pone.0336702
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0336702
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0336702&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0336702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Justas Dilys & Voitech Stankevič & Krzysztof Łuksza, 2021. "Implementation of Extended Kalman Filter with Optimized Execution Time for Sensorless Control of a PMSM Using ARM Cortex-M3 Microcontroller," Energies, MDPI, vol. 14(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karol Kyslan & Viktor Petro & Peter Bober & Viktor Šlapák & František Ďurovský & Mateusz Dybkowski & Matúš Hric, 2022. "A Comparative Study and Optimization of Switching Functions for Sliding-Mode Observer in Sensorless Control of PMSM," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Lorenzo Carbone & Simone Cosso & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2021. "State-Space Approach for SPMSM Sensorless Passive Algorithm Tuning," Energies, MDPI, vol. 14(21), pages 1-11, November.
    3. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    4. Alessandro Benevieri & Lorenzo Carbone & Simone Cosso & Krishneel Kumar & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2022. "Surface Permanent Magnet Synchronous Motors’ Passive Sensorless Control: A Review," Energies, MDPI, vol. 15(20), pages 1-26, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0336702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.