IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0327100.html
   My bibliography  Save this article

Can random walking on a Hi-C contact matrix lead to data quality improvement? An assessment

Author

Listed:
  • Yongqi Liu
  • Shili Lin

Abstract

Hi-C and single cell Hi-C (scHi-C) data are now routinely generated for studying an array of biological questions of interest, including whole genome chromatin organization to gain a better understanding of the chromosome three-dimensional hierarchical structure: compartments, Topologically Associated Domains (TADs), and long-range interactions. Due to concerns about data quality, especially for scHi-C because of its sparsity, data quality improvement is seen as a necessary step before performing analyses to answer biological questions. As such, methods have been developed accordingly, among them is a set of methods that are “random walk”- based, including random walk with a limited number of steps (RWS) and random walk with restart (RWR). Nevertheless, there is little justification for the use of such methods, nor quantification of their performance success. Taking correct identification of TADs as the end point, in this paper, we describe the characteristics of random-walk-based approaches and carry out empirical investigation for identifying TADs before and after random walks. Due to the lack of practical guidelines for choosing tuning parameters necessary for performing random walks, it is difficult to know how many steps of random walk for RWS or how small a restart probability for RWR should one choose to achieve good performance. Even in the unrealistic scenario when one has the hindsight to use the optimal parameter values, little improvement in downstream TAD analyses by first performing random walk was observed. This conclusion was based on extensive analytical analyses, simulation study, and real data applications. Therefore, the current study provides a cautionary note to researchers who may consider using random-walk-based approaches prior to downstream analyses.

Suggested Citation

  • Yongqi Liu & Shili Lin, 2025. "Can random walking on a Hi-C contact matrix lead to data quality improvement? An assessment," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-18, September.
  • Handle: RePEc:plo:pone00:0327100
    DOI: 10.1371/journal.pone.0327100
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0327100
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0327100&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0327100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tim J. Stevens & David Lando & Srinjan Basu & Liam P. Atkinson & Yang Cao & Steven F. Lee & Martin Leeb & Kai J. Wohlfahrt & Wayne Boucher & Aoife O’Shaughnessy-Kirwan & Julie Cramard & Andre J. Faure, 2017. "3D structures of individual mammalian genomes studied by single-cell Hi-C," Nature, Nature, vol. 544(7648), pages 59-64, April.
    2. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    3. Takashi Nagano & Yaniv Lubling & Tim J. Stevens & Stefan Schoenfelder & Eitan Yaffe & Wendy Dean & Ernest D. Laue & Amos Tanay & Peter Fraser, 2013. "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure," Nature, Nature, vol. 502(7469), pages 59-64, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Dunming Hua & Ming Gu & Xiao Zhang & Yanyi Du & Hangcheng Xie & Li Qi & Xiangjun Du & Zhidong Bai & Xiaopeng Zhu & Dechao Tian, 2024. "DiffDomain enables identification of structurally reorganized topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Hao Wang & Jiaxin Yang & Xinrui Yu & Yu Zhang & Jianliang Qian & Jianrong Wang, 2025. "Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    6. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    7. Heming Xu & Yi Chi & Changjian Yin & Cheng Li & Yujie Chen & Zhiyuan Liu & Xiaowen Liu & Hao Xie & Zi-Jiang Chen & Han Zhao & Keliang Wu & Shigang Zhao & Dong Xing, 2025. "Three-dimensional genome structures of single mammalian sperm," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    8. K. S. Beckwith & Ø. Ødegård-Fougner & N. R. Morero & C. Barton & F. Schueder & W. Tang & S. Alexander & J- M. Peters & R. Jungmann & E. Birney & J. Ellenberg, 2025. "Nanoscale 3D DNA tracing in non-denatured cells resolves the Cohesin-dependent loop architecture of the genome in situ," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Wenqiang Li & Yunxi Liao & Zhujiang Liu & Longjian Niu & Jiaqi Huang & Yiting Jia & Ran Xu & Sudun Guan & Zhenhui Liang & Yiran Li & Hao Wu & Shirong Zhu & Liao Tan & Fang Yu & Zhihua Wang & Luyang Su, 2025. "The inner nuclear membrane protein LEMD3 organizes the 3D chromatin architecture to maintain vascular smooth muscle cell identity," Nature Communications, Nature, vol. 16(1), pages 1-25, December.
    10. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Xianle Shi & Yanjing Li & Hongwei Zhou & Xiukun Hou & Jihong Yang & Vikas Malik & Francesco Faiola & Junjun Ding & Xichen Bao & Miha Modic & Weiyu Zhang & Lingyi Chen & Syed Raza Mahmood & Effie Apost, 2024. "DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    15. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    16. Meng Yan & Xiaoyu Merlin Zhang & Zhenhua Yang & Miao Jia & Rongyu Liao & Jinsong Li, 2025. "Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    17. Kim L. Luca & Pim M. J. Rullens & Magdalena A. Karpinska & Sandra S. Vries & Agnieszka Gacek-Matthews & Lőrinc S. Pongor & Gaëlle Legube & Joanna W. Jachowicz & A. Marieke Oudelaar & Jop Kind, 2024. "Genome-wide profiling of DNA repair proteins in single cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Vianne R. Gao & Rui Yang & Arnav Das & Renhe Luo & Hanzhi Luo & Dylan R. McNally & Ioannis Karagiannidis & Martin A. Rivas & Zhong-Min Wang & Darko Barisic & Alireza Karbalayghareh & Wilfred Wong & Yi, 2024. "ChromaFold predicts the 3D contact map from single-cell chromatin accessibility," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Mattia Conte & Ehsan Irani & Andrea M. Chiariello & Alex Abraham & Simona Bianco & Andrea Esposito & Mario Nicodemi, 2022. "Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Judith H. I. Haarhuis & Robin H. Weide & Vincent A. Blomen & Koen D. Flach & Hans Teunissen & Laureen Willems & Thijn R. Brummelkamp & Benjamin D. Rowland & Elzo Wit, 2022. "A Mediator-cohesin axis controls heterochromatin domain formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0327100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.