IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61689-y.html
   My bibliography  Save this article

Nanoscale 3D DNA tracing in non-denatured cells resolves the Cohesin-dependent loop architecture of the genome in situ

Author

Listed:
  • K. S. Beckwith

    (European Molecular Biology Laboratory
    Norwegian University of Science and Technology)

  • Ø. Ødegård-Fougner

    (European Molecular Biology Laboratory
    Institute for Cancer Research)

  • N. R. Morero

    (European Molecular Biology Laboratory)

  • C. Barton

    (European Molecular Biology Laboratory
    University of London)

  • F. Schueder

    (Ludwig Maximilian University
    Max Planck Institute of Biochemistry
    ETH Zurich)

  • W. Tang

    (Vienna Biocenter)

  • S. Alexander

    (European Molecular Biology Laboratory)

  • J- M. Peters

    (Vienna Biocenter)

  • R. Jungmann

    (Ludwig Maximilian University
    Max Planck Institute of Biochemistry)

  • E. Birney

    (European Molecular Biology Laboratory)

  • J. Ellenberg

    (European Molecular Biology Laboratory
    Stockholm University)

Abstract

The spatial organization of the genome is essential for its functions, including gene expression and chromosome segregation. Phase separation and loop extrusion have been proposed to underlie compartments and topologically associating domains, however, whether the fold of genomic DNA inside the nucleus is consistent with such mechanisms has been difficult to establish in situ. Here, we present a 3D DNA-tracing workflow that resolves genome architecture in single structurally well-preserved cells with nanometre resolution. Our findings reveal that genomic DNA generally behaves as a flexible random coil at the 100-kb scale. At CTCF sites however, we find Cohesin-dependent loops in a subset of cells, in variable conformations from the kilobase to megabase scale. The 3D-folds we measured in hundreds of single cells allowed us to formulate a computational model that explains how sparse and dynamic loops in single cells underlie the appearance of compact topological domains measured in cell populations.

Suggested Citation

  • K. S. Beckwith & Ø. Ødegård-Fougner & N. R. Morero & C. Barton & F. Schueder & W. Tang & S. Alexander & J- M. Peters & R. Jungmann & E. Birney & J. Ellenberg, 2025. "Nanoscale 3D DNA tracing in non-denatured cells resolves the Cohesin-dependent loop architecture of the genome in situ," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61689-y
    DOI: 10.1038/s41467-025-61689-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61689-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61689-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonio Tedeschi & Gordana Wutz & Sébastien Huet & Markus Jaritz & Annelie Wuensche & Erika Schirghuber & Iain Finley Davidson & Wen Tang & David A. Cisneros & Venugopal Bhaskara & Tomoko Nishiyama & , 2013. "Wapl is an essential regulator of chromatin structure and chromosome segregation," Nature, Nature, vol. 501(7468), pages 564-568, September.
    2. Brian J. Beliveau & Alistair N. Boettiger & Maier S. Avendaño & Ralf Jungmann & Ruth B. McCole & Eric F. Joyce & Caroline Kim-Kiselak & Frédéric Bantignies & Chamith Y. Fonseka & Jelena Erceg & Mohamm, 2015. "Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    3. Michael Mitter & Catherina Gasser & Zsuzsanna Takacs & Christoph C. H. Langer & Wen Tang & Gregor Jessberger & Charlie T. Beales & Eva Neuner & Stefan L. Ameres & Jan-Michael Peters & Anton Goloborodk, 2020. "Conformation of sister chromatids in the replicated human genome," Nature, Nature, vol. 586(7827), pages 139-144, October.
    4. Leslie J. Mateo & Sedona E. Murphy & Antonina Hafner & Isaac S. Cinquini & Carly A. Walker & Alistair N. Boettiger, 2019. "Visualizing DNA folding and RNA in embryos at single-cell resolution," Nature, Nature, vol. 568(7750), pages 49-54, April.
    5. Ester Falconer & Elizabeth A. Chavez & Alexander Henderson & Steven S. S. Poon & Steven McKinney & Lindsay Brown & David G. Huntsman & Peter M. Lansdorp, 2010. "Identification of sister chromatids by DNA template strand sequences," Nature, Nature, vol. 463(7277), pages 93-97, January.
    6. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    7. Miao Liu & Yanfang Lu & Bing Yang & Yanbo Chen & Jonathan S. D. Radda & Mengwei Hu & Samuel G. Katz & Siyuan Wang, 2020. "Multiplexed imaging of nucleome architectures in single cells of mammalian tissue," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    8. Takashi Nagano & Yaniv Lubling & Tim J. Stevens & Stefan Schoenfelder & Eitan Yaffe & Wendy Dean & Ernest D. Laue & Amos Tanay & Peter Fraser, 2013. "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure," Nature, Nature, vol. 502(7469), pages 59-64, October.
    9. Yodai Takei & Jina Yun & Shiwei Zheng & Noah Ollikainen & Nico Pierson & Jonathan White & Sheel Shah & Julian Thomassie & Shengbao Suo & Chee-Huat Linus Eng & Mitchell Guttman & Guo-Cheng Yuan & Long , 2021. "Integrated spatial genomics reveals global architecture of single nuclei," Nature, Nature, vol. 590(7845), pages 344-350, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guang Shi & D. Thirumalai, 2023. "A maximum-entropy model to predict 3D structural ensembles of chromatin from pairwise distances with applications to interphase chromosomes and structural variants," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Lindsay Lee & Hongyu Yu & Bojing Blair Jia & Adam Jussila & Chenxu Zhu & Jiawen Chen & Liangqi Xie & Antonina Hafner & Shreya Mishra & Duan Dennis Wang & Caterina Strambio-De-Castillia & Alistair Boet, 2023. "SnapFISH: a computational pipeline to identify chromatin loops from multiplexed DNA FISH data," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. Robin Aguilar & Conor K. Camplisson & Qiaoyi Lin & Karen H. Miga & William S. Noble & Brian J. Beliveau, 2024. "Tigerfish designs oligonucleotide-based in situ hybridization probes targeting intervals of highly repetitive DNA at the scale of genomes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yuxiang Zhan & Francesco Musella & Frank Alber, 2025. "MaxComp: Predicting single-cell chromatin compartments from 3D chromosome structures," PLOS Computational Biology, Public Library of Science, vol. 21(5), pages 1-27, May.
    5. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Yufan Zhou & Tian Li & Lavanya Choppavarapu & Kun Fang & Shili Lin & Victor X. Jin, 2024. "Integration of scHi-C and scRNA-seq data defines distinct 3D-regulated and biological-context dependent cell subpopulations," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Jingxuan Xu & Xiang Xu & Dandan Huang & Yawen Luo & Lin Lin & Xuemei Bai & Yang Zheng & Qian Yang & Yu Cheng & An Huang & Jingyi Shi & Xiaochen Bo & Jin Gu & Hebing Chen, 2024. "A comprehensive benchmarking with interpretation and operational guidance for the hierarchy of topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Ryuichiro Nakato & Toyonori Sakata & Jiankang Wang & Luis Augusto Eijy Nagai & Yuya Nagaoka & Gina Miku Oba & Masashige Bando & Katsuhiko Shirahige, 2023. "Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    13. Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Dunming Hua & Ming Gu & Xiao Zhang & Yanyi Du & Hangcheng Xie & Li Qi & Xiangjun Du & Zhidong Bai & Xiaopeng Zhu & Dechao Tian, 2024. "DiffDomain enables identification of structurally reorganized topologically associating domains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Meng Yan & Xiaoyu Merlin Zhang & Zhenhua Yang & Miao Jia & Rongyu Liao & Jinsong Li, 2025. "Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    16. Yongqi Liu & Shili Lin, 2025. "Can random walking on a Hi-C contact matrix lead to data quality improvement? An assessment," PLOS ONE, Public Library of Science, vol. 20(9), pages 1-18, September.
    17. Hao Wang & Jiaxin Yang & Xinrui Yu & Yu Zhang & Jianliang Qian & Jianrong Wang, 2025. "Tensor-FLAMINGO unravels the complexity of single-cell spatial architectures of genomes at high-resolution," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    18. Louisa Hill & Gordana Wutz & Markus Jaritz & Hiromi Tagoh & Lesly Calderón & Jan-Michael Peters & Anton Goloborodko & Meinrad Busslinger, 2023. "Igh and Igk loci use different folding principles for V gene recombination due to distinct chromosomal architectures of pro-B and pre-B cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    20. Kosuke Tomimatsu & Takeru Fujii & Ryoma Bise & Kazufumi Hosoda & Yosuke Taniguchi & Hiroshi Ochiai & Hiroaki Ohishi & Kanta Ando & Ryoma Minami & Kaori Tanaka & Taro Tachibana & Seiichi Mori & Akihito, 2024. "Precise immunofluorescence canceling for highly multiplexed imaging to capture specific cell states," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61689-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.