IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0326125.html
   My bibliography  Save this article

Reinsurance–investment game between two α-maxmin mean–variance insurers

Author

Listed:
  • Qian Zhang
  • Guoyong Zhou
  • Jing Fu

Abstract

This paper examines a non-zero-sum stochastic differential reinsurance-investment game between two competitive insurers under the α-maximin mean-variance criterion. Both insurers can purchase proportional reinsurance and invest in a financial market consisting of one risk-free asset and one risky asset, and each insurer is concerned with its terminal surplus and relative performance compared to its competitor. The insurers aim to maximize the α-maximin mean-variance utility, which allows them to exhibit different attitudes towards model ambiguity. By solving the extended Hamilton-Jacobi-Bellman (HJB) equations for both insurers, we derive the α-robust equilibrium reinsurance and investment strategies. Finally, several numerical examples are provided to illustrate the impact of some model parameters on the equilibrium strategies.

Suggested Citation

  • Qian Zhang & Guoyong Zhou & Jing Fu, 2025. "Reinsurance–investment game between two α-maxmin mean–variance insurers," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0326125
    DOI: 10.1371/journal.pone.0326125
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326125
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0326125&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0326125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    2. Xia Han & Zhibin Liang & Virginia R. Young, 2020. "Optimal reinsurance to minimize the probability of drawdown under the mean-variance premium principle," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(10), pages 879-903, November.
    3. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    4. Yuan, Yu & Han, Xia & Liang, Zhibin & Yuen, Kam Chuen, 2023. "Optimal reinsurance-investment strategy with thinning dependence and delay factors under mean-variance framework," European Journal of Operational Research, Elsevier, vol. 311(2), pages 581-595.
    5. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Yuan & Kexin Wang & Caibin Zhang, 2024. "Stochastic differential reinsurance game for two competitive insurers with ambiguity-aversion under mean-variance premium principle," Annals of Operations Research, Springer, vol. 335(1), pages 441-467, April.
    2. Zhang, Liming & Wu, Hongping & Zhao, Qian & Wang, Ning, 2024. "Equilibrium reinsurance strategies for catastrophe and secondary claims under α-maxmin mean–variance criterion," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    3. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    4. Landriault, David & Li, Bin & Li, Danping & Li, Dongchen, 2016. "A pair of optimal reinsurance–investment strategies in the two-sided exit framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 284-294.
    5. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    6. Yakun Liu & Jingchao Li & Jieming Zhou & Yingchun Deng, 2024. "Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-34, September.
    7. Chen, Lv & Qian, Linyi & Shen, Yang & Wang, Wei, 2016. "Constrained investment–reinsurance optimization with regime switching under variance premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 253-267.
    8. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    9. Li, Danping & Young, Virginia R., 2022. "Stackelberg differential game for reinsurance: Mean-variance framework and random horizon," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 42-55.
    10. Li, Danping & Li, Dongchen & Young, Virginia R., 2017. "Optimality of excess-loss reinsurance under a mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 82-89.
    11. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    12. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    13. Liu, Bing & Meng, Hui & Zhou, Ming, 2021. "Optimal investment and reinsurance policies for an insurer with ambiguity aversion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    14. Li, Bin & Li, Danping & Xiong, Dewen, 2016. "Alpha-robust mean-variance reinsurance-investment strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 101-123.
    15. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    16. Chen, Lv & Shen, Yang, 2019. "Stochastic Stackelberg differential reinsurance games under time-inconsistent mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 120-137.
    17. Li, Danping & Young, Virginia R., 2019. "Optimal reinsurance to minimize the discounted probability of ruin under ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 143-152.
    18. Junna Bi & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal mean–variance investment/reinsurance with common shock in a regime-switching market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 109-135, August.
    19. Zhang, Xin & Meng, Hui & Zeng, Yan, 2016. "Optimal investment and reinsurance strategies for insurers with generalized mean–variance premium principle and no-short selling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 125-132.
    20. Zhibin Liang & Junna Bi & Kam Chuen Yuen & Caibin Zhang, 2016. "Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 155-181, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.