IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0326101.html
   My bibliography  Save this article

A novel method for approximate solution of two point non local fractional order coupled boundary value problems

Author

Listed:
  • Lahoucine Tadoummant
  • Hammad Khalil
  • Rachid Echarggaoui
  • Sarah Aljohani
  • Nabil Mlaiki

Abstract

The aim of this paper is to investigate the solution of fractional-order partial differential equations and their coupled systems. A novel method is proposed, which effectively handles these problems under two-point non-local boundary conditions. The method is based on shifted Legendre polynomials, and some new operational matrices for these polynomials are constructed. In order to convert the partial differential equation together with its nonlocal boundary condition these matrices play important role. The matrices are used to convert the fractional-order derivatives and integrals, as well as the non-local boundary conditions to a system of algebraic equations. The convergence of the proposed method is rigorously analyzed and supported by a range of computational examples. The results obtained with the proposed method shows that the absolute and relative errors decreased for both the solutions X and Y as the parameter M increases. A significant reduction in both error types is observed, with the relative error |Xr| decreasing from approximately 10−1 to 10−8. We observed that the convergence rates lie in the range of 1.016 to 1.497 for |Xr|, and 0.985 to 1.451 for |Yr|. These results confirm the high precision and exponential convergence behavior of the proposed numerical method. All simulations are performed using MATLAB to validate the proposed approach. The algorithm is presented as pseudo code in the article. The MATLAB codes used for the simulation of the algorithm is presented as supplementary material.

Suggested Citation

  • Lahoucine Tadoummant & Hammad Khalil & Rachid Echarggaoui & Sarah Aljohani & Nabil Mlaiki, 2025. "A novel method for approximate solution of two point non local fractional order coupled boundary value problems," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-31, July.
  • Handle: RePEc:plo:pone00:0326101
    DOI: 10.1371/journal.pone.0326101
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0326101
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0326101&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0326101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah Hussain & Elissa Nadia Madi & Naveed Iqbal & Thongchai Botmart & Yeliz Karaca & Wael W. Mohammed, 2021. "Fractional Dynamics of Vector-Borne Infection with Sexual Transmission Rate and Vaccination," Mathematics, MDPI, vol. 9(23), pages 1-22, December.
    2. Alfifi, H.Y., 2022. "Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Shah, Kamal & Arfan, Muhammad & Ullah, Aman & Al-Mdallal, Qasem & Ansari, Khursheed J. & Abdeljawad, Thabet, 2022. "Computational study on the dynamics of fractional order differential equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Yasmin, Humaira, 2022. "Effect of vaccination on non-integer dynamics of pneumococcal pneumonia infection," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    5. Farman, Muhammad & Xu, Changjin & Shehzad, Aamir & Akgul, Ali, 2024. "Modeling and dynamics of measles via fractional differential operator of singular and non-singular kernels," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 461-488.
    6. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0326101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.