Author
Listed:
- Shadi Naderyan Feˈli
- Mohammad Hassan Emamian
- Mehdi Yaseri
- Hamid Riazi-Esfahani
- Hassan Hashemi
- Akbar Fotouhi
- Kamran Yazdani
Abstract
Background and objective: Prediction models enable healthcare providers to perform early risk stratification. This study aimed to develop and internally validate prediction models for 5- and 10-year risks of developing diabetic retinopathy (DR) in the Iranian individuals with type 2 diabetes. Methods: This study utilized data from individuals with diabetes involved in the Shahroud Eye Cohort Study (ShECS), a prospective cohort study in Iran. The initial phase of ShECS began in 2009, with the second and third follow-up phases occurring in 2014 and 2019, respectively. Logistic regression developed prediction models, with bootstrap validation assessing internal validity. Model performance was evaluated using the discrimination and calibration. Results: A total of 637 individuals with diabetes (35.0% men, mean (SD) of age: 53.0 (6.3 years)) were diagnosed. The five-year cumulative incidence of DR was 25.3% (95%CI: 21.8, 29.0%), and 17.0% (95%CI: 13.3, 21.0%) based on the second and third phases, respectively, while 10-year cumulative incidence was 40.0% (95%CI: 35.8, 44.0%). Incorporating various predictors, six models were developed with three recommended prediction models. Using mean blood pressure (MBP), non-fasting blood glucose (BG), and diabetes duration, Model-1 predicts 5-year risk indicating good calibration and discrimination with a c-statistic of 0.773 after bootstrap validation. The optimal statistical threshold was a predicted probability of 0.24. Model-2 predicts a 10-year risk incorporating diabetes duration, MBP, and BG, with a good calibration and a c-statistic of 0.687 after bootstrap validation showing moderate discrimination. The optimal statistical threshold was a predicted probability of 0.32. Model-3 predicts the 5-year risk using diabetes duration, MBP, glycated hemoglobin, high-density lipoprotein, triglycerides, and fasting blood glucose, showing good calibration and a c-statistic of 0.735 after bootstrap validation, indicating good discrimination. The optimal statistical threshold was a predicted probability of 0.20. Conclusion: Three prediction models with satisfactory performance were obtained using readily available predictors.
Suggested Citation
Shadi Naderyan Feˈli & Mohammad Hassan Emamian & Mehdi Yaseri & Hamid Riazi-Esfahani & Hassan Hashemi & Akbar Fotouhi & Kamran Yazdani, 2025.
"Development and validation of prediction models for diabetic retinopathy in type 2 diabetes patients,"
PLOS ONE, Public Library of Science, vol. 20(7), pages 1-16, July.
Handle:
RePEc:plo:pone00:0325814
DOI: 10.1371/journal.pone.0325814
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0325814. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.