IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0323232.html
   My bibliography  Save this article

Relaxation-assisted reverse annealing on nonnegative/binary matrix factorization

Author

Listed:
  • Renichiro Haba
  • Masayuki Ohzeki
  • Kazuyuki Tanaka

Abstract

Quantum annealing has garnered significant attention as meta-heuristics inspired by quantum physics for combinatorial optimization problems. Among its many applications, nonnegative/binary matrix factorization stands out for its complexity and relevance in unsupervised machine learning. The use of reverse annealing, a derivative procedure of quantum annealing to prioritize the search in a vicinity under a given initial state, helps improve its optimization performance in matrix factorization. This study proposes an improved strategy that integrates reverse annealing with a linear programming relaxation technique. Using relaxed solutions as the initial configuration for reverse annealing, we demonstrate improvements in optimization performance comparable to the exact optimization methods. Our experiments on facial image datasets show that our method provides better convergence than known reverse annealing methods. Furthermore, we investigate the effectiveness of relaxation-based initialization methods on randomized datasets, demonstrating a relationship between the relaxed solution and the optimal solution. This research underscores the potential of combining reverse annealing and classical optimization strategies to enhance optimization performance.

Suggested Citation

  • Renichiro Haba & Masayuki Ohzeki & Kazuyuki Tanaka, 2025. "Relaxation-assisted reverse annealing on nonnegative/binary matrix factorization," PLOS ONE, Public Library of Science, vol. 20(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0323232
    DOI: 10.1371/journal.pone.0323232
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0323232
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0323232&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0323232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
    2. Roman Orus & Samuel Mugel & Enrique Lizaso, 2018. "Forecasting financial crashes with quantum computing," Papers 1810.07690, arXiv.org, revised Jun 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Fern'andez-Lorenzo & Diego Porras & Juan Jos'e Garc'ia-Ripoll, 2020. "Hybrid quantum-classical optimization for financial index tracking," Papers 2008.12050, arXiv.org, revised Oct 2021.
    2. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    3. Samuel Mugel & Enrique Lizaso & Roman Orus, 2020. "Use Cases of Quantum Optimization for Finance," Papers 2010.01312, arXiv.org.
    4. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    5. Fernández-Villaverde, Jesús & Hull, Isaiah, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," CEPR Discussion Papers 18190, C.E.P.R. Discussion Papers.
    6. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    7. Davide Venturelli & Alexei Kondratyev, 2018. "Reverse Quantum Annealing Approach to Portfolio Optimization Problems," Papers 1810.08584, arXiv.org, revised Oct 2018.
    8. Raphael Auer & Angela Dupont & Leonardo Gambacorta & Joon Suk Park & Koji Takahashi & Andras Valko, 2024. "Quantum computing and the financial system: opportunities and risks," BIS Papers, Bank for International Settlements, number 149.
    9. Kyle Steinhauer & Takahisa Fukadai & Sho Yoshida, 2020. "Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation," Papers 2009.08412, arXiv.org.
    10. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
    11. Skavysh, Vladimir & Priazhkina, Sofia & Guala, Diego & Bromley, Thomas R., 2023. "Quantum monte carlo for economics: Stress testing and macroeconomic deep learning," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    12. Marcos López de Prado & Joseph Simonian & Francesco A. Fabozzi & Frank J. Fabozzi, 2025. "Enhancing Markowitz's portfolio selection paradigm with machine learning," Annals of Operations Research, Springer, vol. 346(1), pages 319-340, March.
    13. Vladimir Skavysh & Sofia Priazhkina & Diego Guala & Thomas Bromley, 2022. "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning," Staff Working Papers 22-29, Bank of Canada.
    14. Martin Vesely, 2023. "Finding the Optimal Currency Composition of Foreign Exchange Reserves with a Quantum Computer," Papers 2303.01909, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0323232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.