Author
Listed:
- Hairong Zheng
- Sikai Zhuang
- Tingting Zhang
Abstract
An accurate prediction of carbon pricing is essential in carbon emission management, and also provides an important role for governments to formulate corresponding policies. However, due to the inherent complexity and dynamics of carbon price sequence, the effectiveness of different decomposition algorithms for carbon price remains to be tested. In addition, existing studies lack a systematic framework to explore the organic integration of external factors and secondary decomposition technology, and the feature processing of complex external factors still needs to be improved. In order to overcome the shortcomings of existing research, This paper presents a Variational Modal Decomposition(VMD) algorithm and a Complete Ensemble Empirical Mode Decomposition with Adaptive Second decomposition technology of Noise(CEEMDAN) decomposition algorithm, and extract the features of external factors by Extreme Gradient Boosting (XGBoost) algorithm. The HI-VMD-PE-CEEMDAN-XGBoost-Transformer model for predicting carbon price is constructed by the combined Transformer algorithm. Specifically, first, we use Hampel identifer(HI) to detect and rectify the anomalies in the original sequence. After applying Variational Mode Decomposition(VMD) decomposition algorithm, Permutation Entropy(PE) is utilized to reassemble the decomposed component. Quadratic Decomposition is performed by Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN) algorithm. Then, the XGBoost algorithm is employed to extract features of external factors and screen key factors as predictive input variables. Finally, Transformer, which has stronger capability of large-scale data parallel processing, is selected as the prediction model to achieve a more scientific and effective carbon price prediction. The empirical analysis results based on EU carbon market data verify the validity and superiority of the proposed model in different forecasting scenarios.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0322548. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.