IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0321616.html
   My bibliography  Save this article

Optimization of multi-AGV task allocation based on an improved PSO algorithm

Author

Listed:
  • Yazhen Zhu
  • Qing Song
  • Meng Li

Abstract

Research on task allocation for multiple automated guided vehicles (AGVs) in factory environments is a key topic in intelligent manufacturing. Existing studies often struggle to balance fairness and priority in task allocation, leading to low AGV utilization and high no-load distances. Moreover, the stability and applicability of task allocation algorithms in real-world production environments face significant challenges. To address these issues, a mathematical model is formulated with the objective of minimizing the no-load distances of all AGVs in material delivery tasks. The model is subsequently enhanced by incorporating task allocation balance and priority. To solve the optimization model, an improved particle swarm optimization algorithm is proposed, and extensive simulation experiments are conducted based on a real factory environment. By comparing the optimization results of the proposed algorithm with those of the latest multi-population genetic algorithm (MGA) and the market-based bundle task allocation method (MBTA), it is evident that both the proposed algorithm and MGA achieve higher AGV utilization and shorter total task completion times than MBTA, while also optimizing no-load distances. Although the running time of the proposed algorithm is slightly higher than that of MBTA, it is significantly lower than that of MGA, and its overall performance in reducing no-load distances and enhancing AGV utilization is superior to that of MGA. The proposed method can be applied to guide multiple AGVs in multi-material delivery tasks in real factory environments.

Suggested Citation

  • Yazhen Zhu & Qing Song & Meng Li, 2025. "Optimization of multi-AGV task allocation based on an improved PSO algorithm," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0321616
    DOI: 10.1371/journal.pone.0321616
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0321616
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0321616&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0321616?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zengliang Han & Dongqing Wang & Feng Liu & Zhiyong Zhao, 2017. "Multi-AGV path planning with double-path constraints by using an improved genetic algorithm," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
    2. Maryam Mousavi & Hwa Jen Yap & Siti Nurmaya Musa & Farzad Tahriri & Siti Zawiah Md Dawal, 2017. "Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixiang Zhang & Yan Yan & Yaoguang Hu, 2024. "Deep reinforcement learning for dynamic scheduling of energy-efficient automated guided vehicles," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3875-3888, December.
    2. Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
    3. Yuanying Cao & Xi Fang, 2023. "Optimized-Weighted-Speedy Q-Learning Algorithm for Multi-UGV in Static Environment Path Planning under Anti-Collision Cooperation Mechanism," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    4. Adrian Kampa & Iwona Paprocka, 2021. "Analysis of Energy Efficient Scheduling of the Manufacturing Line with Finite Buffer Capacity and Machine Setup and Shutdown Times," Energies, MDPI, vol. 14(21), pages 1-25, November.
    5. Moussa Abderrahim & Abdelghani Bekrar & Damien Trentesaux & Nassima Aissani & Karim Bouamrane, 2020. "Manufacturing 4.0 Operations Scheduling with AGV Battery Management Constraints," Energies, MDPI, vol. 13(18), pages 1-19, September.
    6. Yangkun Xia & Zhuo Fu & Lijun Pan & Fenghua Duan, 2018. "Tabu search algorithm for the distance-constrained vehicle routing problem with split deliveries by order," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    7. Vinícius Antonio Battagello & Nei Yoshihiro Soma & Rubens Junqueira Magalhães Afonso, 2020. "Computational load reduction of the agent guidance problem using Mixed Integer Programming," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-45, June.
    8. Wenxiang Xu & Shunsheng Guo, 2019. "A Multi-Objective and Multi-Dimensional Optimization Scheduling Method Using a Hybrid Evolutionary Algorithms with a Sectional Encoding Mode," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    9. Nan Zhao & Chun Feng, 2023. "Research on Multi-AGV Task Allocation in Train Unit Maintenance Workshop," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    10. Zhuoling Jiang & Xiaodong Zhang & Pei Wang, 2023. "Grid-Map-Based Path Planning and Task Assignment for Multi-Type AGVs in a Distribution Warehouse," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    11. Lulu Cheng & Ning Zhao & Mengge Yuan & Kan Wu, 2023. "Stochastic scheduling of autonomous mobile robots at hospitals," PLOS ONE, Public Library of Science, vol. 18(10), pages 1-24, October.
    12. Ho, G.T.S. & Tang, Yuk Ming & Leung, Eric K.H. & Tong, P.H., 2025. "Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    13. Jianxun Li & Wenjie Cheng & Kin Keung Lai & Bhagwat Ram, 2022. "Multi-AGV Flexible Manufacturing Cell Scheduling Considering Charging," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    14. Yubang Liu & Shouwen Ji & Zengrong Su & Dong Guo, 2019. "Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0321616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.