IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0319098.html
   My bibliography  Save this article

Mechanistic insights into Alpha-Synuclein binding to P2RX7: A molecular dynamic and docking study

Author

Listed:
  • Mukesh Kumar
  • Kanchan Singh
  • Jayant Joshi
  • Shreya Sharma
  • Amit Kumar
  • Karuna Irungbam
  • Manish Mahawar
  • Mohini Saini

Abstract

Alpha-synucleinopathies, characterized by extracellular alpha-synuclein (αSyn or SNCA) accumulation and aggregation, have been linked to neurological disorders including Parkinson’s disease and multiple system atrophy. P2RX7 is a non-selective cationic transmembrane purinergic receptor activated by elevated levels of extracellular ATP, which typically occurs during inflammatory conditions. Activation of P2RX7 by αSyn is implicated in neuronal degeneration, potentially causing pore dilation and increased inflammation. By integrating the data curation, molecular docking, and molecular dynamics (MD) simulations, along with structural analyses, we attempted to elucidate the molecular mechanisms and binding sites for P2RX7-αSyn interaction. We elucidated interactions between P2RX7 and the N-terminal domain (NTD) of αSyn. Utilizing cryo-EM structures of P2RX7 in ATP-bound and unbound states, we assessed αSyn’s effect on P2RX7 structural and functional dynamics. Initially, the analyses revealed that αSyn interactomes are mainly involved in mitochondrial functions, while P2RX7 interactors are linked to receptor internalization and calcium transport. Molecular docking with six tools identified that αSyn-NTD fragments preferentially bind to the proximal region of P2RX7’s transmembrane domain. Microsecond all atom MD simulations in a POPS lipid bilayer showed significant atomic fluctuations, particularly in the head region, lower body, and large loop of P2RX7’s cytoplasmic domain. Secondary structure analysis indicated unfolding in regions related to pore dilation and receptor desensitization. Further by contact-based and solvent accessibility analyses, along with protein structure network (PSN) studies, we identified crucial residues involved in αSyn-P2RX7 interactions. This understanding enhances the knowledge of how αSyn and P2RX7 interactions take place, potentially contributing to neurodegenerative diseases, and could be instrumental in developing future preventive and therapeutic approaches.

Suggested Citation

  • Mukesh Kumar & Kanchan Singh & Jayant Joshi & Shreya Sharma & Amit Kumar & Karuna Irungbam & Manish Mahawar & Mohini Saini, 2025. "Mechanistic insights into Alpha-Synuclein binding to P2RX7: A molecular dynamic and docking study," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-29, May.
  • Handle: RePEc:plo:pone00:0319098
    DOI: 10.1371/journal.pone.0319098
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319098
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0319098&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0319098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marin Matic & Pasquale Miglionico & Manae Tatsumi & Asuka Inoue & Francesco Raimondi, 2023. "GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Genki Hibi & Taro Shiraishi & Tatsuki Umemura & Kenji Nemoto & Yusuke Ogura & Makoto Nishiyama & Tomohisa Kuzuyama, 2023. "Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Yuteng Weng & Yanhuizhi Feng & Zeyuan Li & Shuyu Xu & Di Wu & Jie Huang & Haicheng Wang & Zuolin Wang, 2024. "Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Jan Philipp Dobert & Jan-Hannes Schäfer & Thomas Dal Maso & Priyadarshini Ravindran & Dustin J. E. Huard & Eileen Socher & Lisa A. Schildmeyer & Raquel L. Lieberman & Wim Versées & Arne Moeller & Frie, 2025. "Cryo-TEM structure of β-glucocerebrosidase in complex with its transporter LIMP-2," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    7. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Qianqiao Liu & Beth M. Stadtmueller, 2023. "SIgA structures bound to Streptococcus pyogenes M4 and human CD89 provide insights into host-pathogen interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Megha Roy & Aurore Sanchez & Raphael Guerois & Issam Senoussi & Arianna Cerana & Jacopo Sgrignani & Andrea Cavalli & Andrea Rinaldi & Petr Cejka, 2025. "EXO1 promotes the meiotic MLH1-MLH3 endonuclease through conserved interactions with MLH1, MSH4 and DNA," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Le Tracy Yu & Mark A. B. Kreutzberger & Thi H. Bui & Maria C. Hancu & Adam C. Farsheed & Edward H. Egelman & Jeffrey D. Hartgerink, 2024. "Exploration of the hierarchical assembly space of collagen-like peptides beyond the triple helix," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Yang Yue & Shu Li & Yihua Cheng & Lie Wang & Tingjun Hou & Zexuan Zhu & Shan He, 2024. "Integration of molecular coarse-grained model into geometric representation learning framework for protein-protein complex property prediction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Patrick Bryant & Frank Noé, 2024. "Structure prediction of alternative protein conformations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Patrick Bryant & Frank Noé, 2024. "Improved protein complex prediction with AlphaFold-multimer by denoising the MSA profile," PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-12, July.
    15. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Hélène Bret & Jinmei Gao & Diego Javier Zea & Jessica Andreani & Raphaël Guerois, 2024. "From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Carlos A Gandarilla-Pérez & Sergio Pinilla & Anne-Florence Bitbol & Martin Weigt, 2023. "Combining phylogeny and coevolution improves the inference of interaction partners among paralogous proteins," PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-19, March.
    18. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Z. Faidon Brotzakis & Shengyu Zhang & Mhd Hussein Murtada & Michele Vendruscolo, 2025. "AlphaFold prediction of structural ensembles of disordered proteins," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    20. Yinxia Liu & Lingyun Zhao & Jinshan Long & Zhenye Huang & Ying Long & Jianjun He & Jian-Hui Jiang, 2025. "A generalizable approach for programming protease-responsive conformationally inhibited artificial transcriptional factors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0319098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.