IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60139-z.html
   My bibliography  Save this article

USP37 prevents premature disassembly of stressed replisomes by TRAIP

Author

Listed:
  • Olga V. Kochenova

    (Blavatnik Institute
    Howard Hughes Medical Institute)

  • Giuseppina D’Alessandro

    (Robinson Way
    The AIRC Institute of Molecular Oncology)

  • Domenic Pilger

    (University of Cambridge)

  • Ernst Schmid

    (Blavatnik Institute)

  • Sean L. Richards

    (Robinson Way)

  • Marcos Rios Garcia

    (University of Birmingham)

  • Satpal S. Jhujh

    (University of Birmingham)

  • Andrea Voigt

    (Robinson Way)

  • Vipul Gupta

    (Robinson Way)

  • Christopher J. Carnie

    (Robinson Way)

  • R. Alex Wu

    (Blavatnik Institute)

  • Nadia Gueorguieva

    (Robinson Way)

  • Simon Lam

    (Robinson Way)

  • Grant S. Stewart

    (University of Birmingham)

  • Johannes C. Walter

    (Blavatnik Institute
    Howard Hughes Medical Institute)

  • Stephen P. Jackson

    (Robinson Way)

Abstract

The eukaryotic replisome, which consists of the CDC45-MCM2-7-GINS (CMG) helicase, replicative polymerases, and several accessory factors, sometimes encounters proteinaceous obstacles that threaten genome integrity. These obstacles are targeted for removal or proteolysis by the E3 ubiquitin ligase TRAIP, which associates with the replisome. However, TRAIP must be carefully regulated to avoid inappropriate ubiquitylation and disassembly of the replisome. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. Furthermore, TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37’s response to topological stress. We propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.

Suggested Citation

  • Olga V. Kochenova & Giuseppina D’Alessandro & Domenic Pilger & Ernst Schmid & Sean L. Richards & Marcos Rios Garcia & Satpal S. Jhujh & Andrea Voigt & Vipul Gupta & Christopher J. Carnie & R. Alex Wu , 2025. "USP37 prevents premature disassembly of stressed replisomes by TRAIP," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60139-z
    DOI: 10.1038/s41467-025-60139-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60139-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60139-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Alex Wu & Daniel R. Semlow & Ashley N. Kamimae-Lanning & Olga V. Kochenova & Gheorghe Chistol & Michael R. Hodskinson & Ravindra Amunugama & Justin L. Sparks & Meng Wang & Lin Deng & Claudia A. Mim, 2019. "TRAIP is a master regulator of DNA interstrand crosslink repair," Nature, Nature, vol. 567(7747), pages 267-272, March.
    2. Derek L. Bolhuis & Dalia Fleifel & Thomas Bonacci & Xianxi Wang & Brandon L. Mouery & Jeanette Gowen Cook & Nicholas G. Brown & Michael J. Emanuele, 2025. "USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Olga V. Kochenova & Sirisha Mukkavalli & Malavika Raman & Johannes C. Walter, 2022. "Cooperative assembly of p97 complexes involved in replication termination," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Author Correction: Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    5. Shaun Scaramuzza & Rebecca M. Jones & Martina Muste Sadurni & Alicja Reynolds-Winczura & Divyasree Poovathumkadavil & Abigail Farrell & Toyoaki Natsume & Patricia Rojas & Cyntia Fernandez Cuesta & Mas, 2023. "TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Michael Jenkyn-Bedford & Morgan L. Jones & Yasemin Baris & Karim P. M. Labib & Giuseppe Cannone & Joseph T. P. Yeeles & Tom D. Deegan, 2021. "A conserved mechanism for regulating replisome disassembly in eukaryotes," Nature, Nature, vol. 600(7890), pages 743-747, December.
    8. James M. Dewar & Magda Budzowska & Johannes C. Walter, 2015. "The mechanism of DNA replication termination in vertebrates," Nature, Nature, vol. 525(7569), pages 345-350, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genki Hibi & Taro Shiraishi & Tatsuki Umemura & Kenji Nemoto & Yusuke Ogura & Makoto Nishiyama & Tomohisa Kuzuyama, 2023. "Discovery of type II polyketide synthase-like enzymes for the biosynthesis of cispentacin," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yuteng Weng & Yanhuizhi Feng & Zeyuan Li & Shuyu Xu & Di Wu & Jie Huang & Haicheng Wang & Zuolin Wang, 2024. "Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Emilie Ma & Fadma Lakhal & Eleni Litsardaki & Myriam Ruault & Maxime Audin & Natacha Levrier & Emilie Navarro & Mickaël Garnier & Laurent Maloisel & Jordane Depagne & Clémentine Brocas & Aurelien Thur, 2025. "A large C-terminal Rad52 segment acts as a chaperone to Form and Stabilize Rad51 Filaments," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    4. Shaun Scaramuzza & Rebecca M. Jones & Martina Muste Sadurni & Alicja Reynolds-Winczura & Divyasree Poovathumkadavil & Abigail Farrell & Toyoaki Natsume & Patricia Rojas & Cyntia Fernandez Cuesta & Mas, 2023. "TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Patrick Bryant & Gabriele Pozzati & Wensi Zhu & Aditi Shenoy & Petras Kundrotas & Arne Elofsson, 2022. "Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Brooke M. Britton & Remy A. Yovanno & Sara F. Costa & Joshua McCausland & Albert Y. Lau & Jie Xiao & Zach Hensel, 2023. "Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Megha Roy & Aurore Sanchez & Raphael Guerois & Issam Senoussi & Arianna Cerana & Jacopo Sgrignani & Andrea Cavalli & Andrea Rinaldi & Petr Cejka, 2025. "EXO1 promotes the meiotic MLH1-MLH3 endonuclease through conserved interactions with MLH1, MSH4 and DNA," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    8. Le Tracy Yu & Mark A. B. Kreutzberger & Thi H. Bui & Maria C. Hancu & Adam C. Farsheed & Edward H. Egelman & Jeffrey D. Hartgerink, 2024. "Exploration of the hierarchical assembly space of collagen-like peptides beyond the triple helix," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Patrick Bryant & Frank Noé, 2024. "Improved protein complex prediction with AlphaFold-multimer by denoising the MSA profile," PLOS Computational Biology, Public Library of Science, vol. 20(7), pages 1-12, July.
    10. Christoph Buhlheller & Theo Sagmeister & Christoph Grininger & Nina Gubensäk & Uwe B. Sleytr & Isabel Usón & Tea Pavkov-Keller, 2024. "SymProFold: Structural prediction of symmetrical biological assemblies," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Z. Faidon Brotzakis & Shengyu Zhang & Mhd Hussein Murtada & Michele Vendruscolo, 2025. "AlphaFold prediction of structural ensembles of disordered proteins," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    13. Yinxia Liu & Lingyun Zhao & Jinshan Long & Zhenye Huang & Ying Long & Jianjun He & Jian-Hui Jiang, 2025. "A generalizable approach for programming protease-responsive conformationally inhibited artificial transcriptional factors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Mukesh Kumar & Kanchan Singh & Jayant Joshi & Shreya Sharma & Amit Kumar & Karuna Irungbam & Manish Mahawar & Mohini Saini, 2025. "Mechanistic insights into Alpha-Synuclein binding to P2RX7: A molecular dynamic and docking study," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-29, May.
    15. Tânia F. Custódio & Maxime Killer & Dingquan Yu & Virginia Puente & Daniel P. Teufel & Alexander Pautsch & Gisela Schnapp & Marc Grundl & Jan Kosinski & Christian Löw, 2023. "Molecular basis of TASL recruitment by the peptide/histidine transporter 1, PHT1," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Devlina Chakravarty & Joseph W. Schafer & Ethan A. Chen & Joseph F. Thole & Leslie A. Ronish & Myeongsang Lee & Lauren L. Porter, 2024. "AlphaFold predictions of fold-switched conformations are driven by structure memorization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Marin Matic & Pasquale Miglionico & Manae Tatsumi & Asuka Inoue & Francesco Raimondi, 2023. "GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Kazutoshi Tani & Ryo Kanno & Xuan-Cheng Ji & Itsusei Satoh & Yuki Kobayashi & Malgorzata Hall & Long-Jiang Yu & Yukihiro Kimura & Akira Mizoguchi & Bruno M. Humbel & Michael T. Madigan & Zheng-Yu Wang, 2023. "Rhodobacter capsulatus forms a compact crescent-shaped LH1–RC photocomplex," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Jan Philipp Dobert & Jan-Hannes Schäfer & Thomas Dal Maso & Priyadarshini Ravindran & Dustin J. E. Huard & Eileen Socher & Lisa A. Schildmeyer & Raquel L. Lieberman & Wim Versées & Arne Moeller & Frie, 2025. "Cryo-TEM structure of β-glucocerebrosidase in complex with its transporter LIMP-2," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60139-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.