IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315424.html
   My bibliography  Save this article

PCB defect detection based on pseudo-inverse transformation and YOLOv5

Author

Listed:
  • Xiaoli Wang
  • Siti Sarah Maidin
  • Malathy Batumalay

Abstract

With the development of integrated circuit packaging technology, the layout of printed circuit boards has become complicated. Moreover, the traditional defect detection methods have been difficult to meet the requirements of high precision. Therefore, in order to solve the problem of low efficiency in defect detection of printed circuit boards, a defect detection method based on pseudo-inverse transform and improved YOLOv5 is proposed. Firstly, a defect image restoration model is constructed to improve image clarity. Secondly, Transformer is introduced to improve YOLOv5, and the batch normalization and network loss function are optimized. These methods improve the speed and accuracy of PCB defect detection. Experimental verification showed that the restoration speed of the image restoration model was 37.60%-42.38% higher than other methods. Compared with other models, the proposed PCB defect detection model had an average increase of 10.90% in recall and 12.87% in average detection accuracy. The average detection accuracy of six types of defects in the self-made PCB data set was over 98.52%, and the average detection accuracy was as high as 99.1%. The results demonstrate that the proposed method can enhance the quality of image processing and optimize YOLOv5 to improve the accuracy of detecting defects in printed circuit boards. This method is demonstrably more effective than existing technology, offering significant value and potential for application in industrial contexts. Its promotion could facilitate the advancement of industrial automation manufacturing.

Suggested Citation

  • Xiaoli Wang & Siti Sarah Maidin & Malathy Batumalay, 2024. "PCB defect detection based on pseudo-inverse transformation and YOLOv5," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0315424
    DOI: 10.1371/journal.pone.0315424
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315424
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315424&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mahdie Afshari Nia & Fatemeh Panahi & Mohammad Ehteram, 2023. "Convolutional Neural Network- ANN- E (Tanh): A New Deep Learning Model for Predicting Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1785-1810, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2023. "Evaluation of Feature Selection Methods in Estimation of Precipitation Based on Deep Learning Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(15), pages 5871-5891, December.
    2. Carmen Calvo-Olivera & Ángel Manuel Guerrero-Higueras & Jesús Lorenzana & Eduardo García-Ortega, 2024. "Real-Time Evaluation of the Uncertainty in Weather Forecasts Through Machine Learning-Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(7), pages 2455-2470, May.
    3. Ziyu Li & Xianqi Zhang, 2024. "A Novel Coupled Model for Monthly Rainfall Prediction Based on ESMD-EWT-SVD-LSTM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(9), pages 3297-3312, July.
    4. Mohammad Ehteram & Ali Najah Ahmed & Zohreh Sheikh Khozani & Ahmed El-Shafie, 2023. "Convolutional Neural Network -Support Vector Machine Model-Gaussian Process Regression: A New Machine Model for Predicting Monthly and Daily Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3631-3655, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.